(本题满分12分)
<ppt><1>已<\ppt>知p:|1-
|≤2,q:x2-2x+1-m2≤0(m>0),若
是
的必要而不充分条件, 求实数m的取值范围.
<ppt><1>解:由题意知:
命题:若
是
的必要而不充分条件的等价命题即逆否命题为:p是q的充分不必要条件. --------------------------2分
p:|1-
|≤2
-2≤
-1≤2
-1≤
≤3
-2≤x≤10
q::x2-2x+1-m2≤0
[x-(1-m)][x-(1+m)]≤0 ---------------6分
∵p是q的充分不必要条件,
∴不等式|1-
|≤2的解集是x2-2x+1-m2≤0(m>0)解集的子集 又∵m>0 ∴不等式的解集为1-m≤x≤1+m ---------------8分
∴
,∴m≥9,
∴实数m的取值范围是[9,+∞
--------------12分
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数
(
,
为常数),且方程
有两个实根为
.
(1)求
的解析式;
(2)证明:曲线
的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角
中,四边形
是边长为
的正方形,
,
为
上的点,且
⊥平面![]()
(Ⅰ)求证:
⊥平面![]()
(Ⅱ)求二面角
的大小;
(Ⅲ)求点
到平面
的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com