分析 根据不等式的性质求出( $\frac{{x}^{2}}{y}$)2∈[16,36],$\frac{1}{{xy}^{2}}$∈[$\frac{1}{8}$,$\frac{1}{3}$],从而求出$\frac{{x}^{3}}{{y}^{4}}$的范围即可.
解答 解:∵实数x,y满足3≤xy2≤8,4≤$\frac{{x}^{2}}{y}$≤6,
则有:( $\frac{{x}^{2}}{y}$)2∈[16,36],$\frac{1}{{xy}^{2}}$∈[$\frac{1}{8}$,$\frac{1}{3}$],
又 $\frac{{x}^{3}}{{y}^{4}}$=( $\frac{{x}^{2}}{y}$)2•$\frac{1}{{xy}^{2}}$∈[2,12],
故答案为:[2,12].
点评 本题考查了不等式的基本性质,考查转化思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | [0,1) | B. | (0,1] | C. | $[\frac{1}{3},\frac{2}{3})$ | D. | $(\frac{1}{3},\frac{2}{3}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com