分析 (1)问将a=2代入函数解析式,并将解析式化简,结合二次函数的性质,确定出函数的单调增区间.
(2)先化简函数解析式,之后判断出函数在相应区间上的单调性,从而结合a的取值范围,分析函数在区间[0,2]上的最大值在哪个点处取得,再求得对应的边界值,最后将函数的最大值表示为关于a的分段函数.
解答 解:(1)当a=2时,f(x)=$\left\{\begin{array}{l}{(x-1)^{2}-1,x≥2}\\{-(x-1)^{2}+1,x<2}\end{array}\right.$,
由二次函数的性质可知,函数的增区间为(-∞,1],或[2,+∞).
(2)∵a>0,∴f(x)=$\left\{\begin{array}{l}{(x-\frac{a}{2})^{2}-\frac{{a}^{2}}{4},x≥a}\\{-(x-\frac{a}{2})^{2}+\frac{{a}^{2}}{4},x<a}\end{array}\right.$,
可知:函数f(x)在$(-∞,\frac{a}{2}]$单调递增,在$[\frac{a}{2},a]$单调递减,在[a,+∞)上单调递增.
∴当$\frac{a}{2}$≥2即a≥4时,fmax(x)=f(2)=2a-4.
当$0<a≤4(\sqrt{2}-1)$时,fmax(x)=f(2)=4-2a.
当$4(\sqrt{2}-1)$<a<4时,fmax(x)=f($\frac{a}{2}$)=$\frac{{a}^{2}}{4}$.
点评 本题考查了二次函数的单调性、不等式的解法,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2015}$ | B. | $\frac{1}{2016}$ | C. | $\frac{2014}{2015}$ | D. | $\frac{2015}{2016}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | [4,8) | C. | (4,8) | D. | (1,8) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com