精英家教网 > 高中数学 > 题目详情
12.已知不等式ax2+bx+1>0的解集为(-2,3),则a+b=0.

分析 利用一元二次不等式的解集与对应方程根的关系得到a,b.

解答 解:由题意a≠0,由于不等式ax2+bx+1>0的解集为(-2,3),
所以$\left\{\begin{array}{l}{-\frac{b}{a}=-2+3}\\{\frac{1}{a}=-2×3}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-\frac{1}{6}}\\{b=\frac{1}{6}}\end{array}\right.$,所以a+b=0;
故答案为:0.

点评 本题考查了一元二次不等式的解集与对应的方程根的关系.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.曲线$\frac{1}{x^2}+\frac{4}{y^2}=1$上的点到原点O的距离最小值等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}的前n项和为Sn,且a3=7,S6=39,则使Sn取最大值时n的值为(  )
A.8B.10C.9或10D.8或9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.给出函数y=lg(ax2+3x+4)
(1)若其值域为R,求实数a的取值范围;
(2)若其定义域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)解不等式:|2x-1|+|2x+1|≤6.
(2)求函数y=5$\sqrt{x-1}$+$\sqrt{10-2x}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.集合A={x|x2+x-6=0},B={x|(a2-1)x+a+1=0},A⊆B,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a,b,c满足a>b>c,且ac<0,则下列不等式中恒成立的个数为(  )
 ①$\frac{b}{a}$>$\frac{c}{a}$ ②$\frac{b-a}{c}$>0 ③$\frac{{b}^{2}}{c}$>$\frac{{a}^{2}}{c}$ ④ab>bc ⑤$\frac{a-c}{ac}$<0.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a>0,函数f(x)=x|x-a|.
(1)当a=2时,写出函数y=f(x)的单调递增区间;
(2)求函数y=f(x)在区间[0,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合M={x|x>1},N={x|x2-3x≤0},求解下列问题:
(1)M∩N;
(2)N∪(∁RM).

查看答案和解析>>

同步练习册答案