精英家教网 > 高中数学 > 题目详情
11.已知△ABC的面积为9$\sqrt{3}$,且$\overrightarrow{AC}•({\overrightarrow{AB}-\overrightarrow{CB}})$=18,向量$\overrightarrow m$=(tanA+tanB,sin2C)和$\overrightarrow n$=(1,cosAcosB)是共线向量.
(Ⅰ)求角C的大小;
(Ⅱ)求AB的长.

分析 (1)根据向量关系结合三角函数的倍角公式进行化简即可,
(2)根据向量数量积的公式以及三角形的面积公式,余弦定理建立方程关系进行求解即可.

解答 解:(1)因为向量向量$\overrightarrow m$=(tanA+tanB,sin2C)和$\overrightarrow n$=(1,cosAcosB)是共线向量,
所以cosAcosB(tanA+tanB)-sin2C=0,…(2分)
即sinAcosB+cosAsinB-2sinCcosC=0,
化简得sinC-2sinCcosC=0,即sinC(1-2cosC)=0.…(4分)
因为0<C<π,所以sinC>0,
从而cosC=$\frac{1}{2}$,C=$\frac{π}{3}$  …(6分)
(2)∵$\overrightarrow{AC}•({\overrightarrow{AB}-\overrightarrow{CB}})$=18,
∴18=$\overrightarrow{AC}•({\overrightarrow{AB}-\overrightarrow{CB}})$=$\overrightarrow{AC}$$•\overrightarrow{AC}$=|$\overrightarrow{AC}$|2
则|$\overrightarrow{AC}$|=$\sqrt{18}$=3$\sqrt{2}$,于是AC=3$\sqrt{2}$.…(8分)
因为△ABC的面积为9$\sqrt{3}$,
所以$\frac{1}{2}$CA•CBsinC=9$\sqrt{3}$,
即$\frac{1}{2}×$3$\sqrt{2}$CBsin$\frac{π}{3}$=9$\sqrt{3}$,解得CB=6$\sqrt{2}$               …(10分)
在△ABC中,由余弦定理得AB2=CA2+CB2-2CA•CBcosC=(3$\sqrt{2}$)2+(6$\sqrt{2}$  )2-2×3$\sqrt{2}$×6$\sqrt{2}$×$\frac{1}{2}$=54,
所以AB=$\sqrt{54}$=3$\sqrt{6}$. …(12分)

点评 本题主要考查向量关系,向量数量积以及余弦定理的应用,综合考查三角函数和向量的关系,考查学生的计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=alnx+$\frac{2{a}^{2}}{x}$+x(a≠0).
(1)若函数y=f(x)在点(1,f(1))处的切线与直线x-2y+3=0垂直,求实数a的值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.曲线$\frac{1}{x^2}+\frac{4}{y^2}=1$上的点到原点O的距离最小值等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.$x=\frac{a_1}{3}+\frac{a_2}{3^2}+…+\frac{{{a_{100}}}}{{{3^{100}}}}$,其中a1,a2,…,a100每一个值都是0或2这两个值中的某一个,则x一定不属于(  )
A.[0,1)B.(0,1]C.$[\frac{1}{3},\frac{2}{3})$D.$(\frac{1}{3},\frac{2}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=xlnx,g(x)=-x2+ax-3
(1)对x∈(0,+∞),不等式2f(x)≥g(x)恒成立,求实数a的取值范围;
(2)证明:对一切x∈(0,+∞),都有$lnx>\frac{1}{e^x}-\frac{2}{ex}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)是定义在{x|x≠0}上的偶函数,且当x>0时,f(x)=log2x.
(1)求出函数f(x)的解析式;
(2)画出函数|f(x)|的图象,并根据图象写出函数|f(x)|的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}的前n项和为Sn,且a3=7,S6=39,则使Sn取最大值时n的值为(  )
A.8B.10C.9或10D.8或9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.给出函数y=lg(ax2+3x+4)
(1)若其值域为R,求实数a的取值范围;
(2)若其定义域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a>0,函数f(x)=x|x-a|.
(1)当a=2时,写出函数y=f(x)的单调递增区间;
(2)求函数y=f(x)在区间[0,2]上的最大值.

查看答案和解析>>

同步练习册答案