精英家教网 > 高中数学 > 题目详情
20.已知sin$\frac{θ}{2}+cos\frac{θ}{2}=\frac{{2\sqrt{2}}}{3}$,则cos2θ=$\frac{79}{81}$.

分析 利用sin$\frac{θ}{2}+cos\frac{θ}{2}=\frac{{2\sqrt{2}}}{3}$,求出sinθ=-$\frac{1}{9}$,利用cos2θ=1-2sin2θ,可得结论.

解答 解:∵sin$\frac{θ}{2}+cos\frac{θ}{2}=\frac{{2\sqrt{2}}}{3}$,
∴1+sinθ=$\frac{8}{9}$,
∴sinθ=-$\frac{1}{9}$,
∴cos2θ=1-2sin2θ=1-2×$\frac{1}{81}$=$\frac{79}{81}$.
故答案为$\frac{79}{81}$.

点评 本题考查二倍角的余弦,考查同角三角函数关系的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|-1<x<2},B={x|x2+2x≤0},则A∩B=(  )
A.{x|0<x<2}B.{x|0≤x<2}C.{x|-1<x<0}D.{x|-1<x≤0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦距为10,点P(2,1)在其渐近线上,则该双曲线的方程为(  )
A.$\frac{x^2}{80}-\frac{y^2}{20}=1$B.$\frac{x^2}{20}-\frac{y^2}{80}=1$C.$\frac{x^2}{20}-\frac{y^2}{5}=1$D.$\frac{x^2}{5}-\frac{y^2}{20}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某校周四下午第五、六两节是选修课时间,现有甲、乙、丙、丁四位教师可开课.已知甲、乙教师各自最多可以开设两节课,丙、丁教师各自最多可以开设一节课.现要求第五、六两节课中每节课恰有两位教师开课(不必考虑教师所开课的班级和内容),则不同的开课方案共有19种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设$\overrightarrow a,\overrightarrow b,\overrightarrow c$为非零向量且相互不共线,下面四个命题:其中正确的是(  )
$(1)({\overrightarrow a•\overrightarrow b})•\overrightarrow c-({\overrightarrow a•\overrightarrow c})•\overrightarrow b=0$;            
$(2)|{\overrightarrow a}|-|{\overrightarrow b}|<|{\overrightarrow a-\overrightarrow b}|$;
$(3)({\overrightarrow b•\overrightarrow c})•\overrightarrow a-({\overrightarrow a•\overrightarrow c})•\overrightarrow b不与\overrightarrow c垂直$;    
 $(4)({3\overrightarrow a+2\overrightarrow b})•({3\overrightarrow a-2\overrightarrow b})=9{|{\overrightarrow a}|^2}-4{|{\overrightarrow b}|^2}$.
A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在等腰直角三角形ABC中,AB=AC=2,点P是边AB上异于A,B的一点,光线从点P出发,经BC,CA发射后又回到原点P(如图).若光线QR经过△ABC的重心,则AP等于(  )
A.$\frac{1}{2}$B.1C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.偶函数f(x)在x>0时,函数f′(x)=x2+ax+b,则f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若集合A={1,2,4,5},B={-1,2,4},则集合A∩B={2,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|2<x<4},B={x|x>3或x<1},则A∩B=(  )
A.{x|2<x<5}B.{x|x<4或x>5}C.{x|3<x<4}D.{x|x<2或x>5}

查看答案和解析>>

同步练习册答案