精英家教网 > 高中数学 > 题目详情

给出下列命题:

的展开式中的常数项是20;

②函数图象与轴围成的图形的面积是

③若,且,则

其中真命题的序号是                         (写出所有正确命题的编号)。

 

【答案】

①③

【解析】

试题分析:①把用二项式定理展开可得常数项为20;②要注意定积分与面积的区别,函数图象与轴围成的图形的面积应该是。③正态分布的曲线关于直线对称。

考点:本题考查二项式定理、定积分、正态分布。

点评:在平常做题中,很多同学认为面积就是定积分,定积分就是面积。从而导致此题出错。实际上,我们是用定积分来求面积,但并不等于定积分就是面积。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题
①向量
AB
的长度与向量
BA
的长度相等;
②向量a与向量b平行,则a与b的方向相同或相反;
③两个有共同起点并且相等的向量,其终点必相同;
④两个有共同终点的向量,一定是共线向量;
⑤向量
AB
与向量
CD
是共线向量,则点A、B、C、D必在同一条直线上;
⑥有向线段就是向量,向量就是有向线段.
其中假命题的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公比为q的等比数列,给出下列命题
①数列{an}的前n项和Sn=
a1-an+11-q

②若q>1,则数列{an}是递增数列;
③若a1<a2<a3,则数列{an}是递增数列;
④若等比数列{an}前n项和Sn=3n+a,则a=-1.
其中正确的是
③④
③④
 (请将你认为正确的命题的序号都写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m、n为两条不同直线,α、β为两个不重合的平面,给出下列命题中正确的有(  )
m⊥α
m⊥n
⇒n∥α

m⊥β
n⊥β
⇒m∥n

m⊥α
m⊥β
⇒α∥β

m?α
n?α
α∥β
⇒m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线m,n,平面α,β,给出下列命题中正确的是(  )
(1)若m⊥α,m⊥β,则α⊥β;
(2)若m∥α,m∥β,则α∥β;
(3)若m⊥α,m∥β,则α⊥β;
(4)若异面直线m,n互相垂直,则存在过m的平面与n垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①质点的位移函数S(t)对时间t的导数就是质点的加速度函数;
②对于函数f(x)=2x2+1图象上的两点P(1,3)和Q(1+△x,3+△y),有
△y△x
=4+2△x

③若质点的位移S(t)与时间t的关系为S(t)=kt+b,则质点的平均速度与任意时刻的瞬时速度相等;
④“f'(x0)=0”是“函数y=f(x)在x=x0时取得极值”的充要条件.
其中,真命题的序号为
②③
②③

查看答案和解析>>

同步练习册答案