精英家教网 > 高中数学 > 题目详情
6.无论k为何值,直线(k+2)x+(1-k)y-4k-5=0都过一个定点,则定点坐标为(3,-1).

分析 直线即即 k(x-y-4)+(2x+y-5)=0,令参数k的系数等于零,求得x和y的值,即可得到定点的坐标.

解答 解:直线(k+2)x+(1-k)y-4k-5=0,即 k(x-y-4)+(2x+y-5)=0,
它一定经过直线x-y-4=0和直线2x+y-5=0的交点M.
由$\left\{\begin{array}{l}{x-y-4=0}\\{2x+y-5=0}\end{array}\right.$ 求得$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$,故点M为(3,-1),
故答案为:(3,-1).

点评 本题主要考查直线过定点问题,令参数k的系数等于零,求得x和y的值,即可得到定点的坐标,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的图象与x轴交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象.若在区间[0,π]上随机取一个数x,则事件“g(x)≥1”发生的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,AD=4,E、F依次是PB、PC的中点.
(1)求直线EC与平面PAD所成的角(结果用反三角函数值表示);
(2)求三棱锥P-AFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.随机变量X的分布列为
Xx1x2x3
Pp1p2p3
若p1,p2,p3成等差数列,则公差d的取值范围是[-$\frac{1}{3}$,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.(1)已知(1+ax)5=1+10x+bx2+…+a5x5,则b=40.
(2)若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=31.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.sin(-600°)=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,F1、F2分别为椭圆C的左、右焦点,若椭圆C的焦距为2.
(1)求椭圆C的方程;
(2)设M为椭圆上任意一点,以M为圆心,MF1为半径作圆M,当圆M与椭圆的右准线l有公共点时,求△MF1F2面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.给出以下五个结论:
①若等比数列{an}满足a1=2,且S3=6,则公比q=-2;
②数列{an}的通项公式an=ncos$\frac{nπ}{2}$+1,前n项和为Sn,则S13=19.
③若数列an=n2+λn(n∈N+)为单调递增数列,则λ取值范围是λ>-2;
④已知数列{an}的通项an=$\frac{3}{2n-11}$,其前n项和为Sn,则使Sn>0的n的最小值为12.
⑤1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<2-$\frac{1}{n}$(n≥2)
其中正确结论的序号为②⑤(写出所有正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在小语种自主招生考试中,某学校获得4个推荐名额,其中韩语2名,日语1名,俄语1名,并且韩语要求必须有女生参加,学校通过选拔定下2女2男共4个推荐对象,则不同的推荐方法共有(  )
A.8种B.10种C.12种D.14种

查看答案和解析>>

同步练习册答案