(1)求椭圆C1的离心率;
(2)若
·
的最大值为49,求椭圆C1的方程.
解:(1)直线l的方程为bx+cy-(3-
)c=0.
因为直线l与圆C2:x2+(y-3)2=1相切,所以d=
=1.
可得2c2=a2,从而e=
.
(2)设P(x,y),则
·
=(
+
)(
+
)=
-
=x2+(y-3)2-1=-(y+3)2+2c2+17(-c≤y≤c),
或者设M(x1,y1),N(x2,y2),P(x,y),因为x1+x2=0,y1+y2=6,x12+y12-6y1+8=0.
所以
·
=(x1-x)(x2-x)+(y1-y)(y2-y)=x2+y2-(x1+x2)x+(y1+y2)y+x1x2+y1y2=x2+y2+6y-x12+y1
(6-y1)=x2+y2+6y+8=-(y+3)2+2c2+17.
①当c≥3时,(
·
)max=17+2c2=49,解得c=4,此时椭圆C1为
+
=1.
②当0<c<3时,(
·
)max=-(-c+3)2+17+2c2=49,
解得c=5
-3,但(5
-3)-3=
-6>0,
所以5
-3>3.故c=5
-3舍去.
综上所述,椭圆C1的方程为
=1.
科目:高中数学 来源: 题型:
A.8 B.12 C.9 D.16
查看答案和解析>>
科目:高中数学 来源: 题型:
A.2 B.4 C.8 D.16
查看答案和解析>>
科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练24练习卷(解析版) 题型:解答题
已知椭圆C1:
+
=1(a>b>0)的右顶点为A(1,0),过C1的焦点且垂直长轴的弦长为1.
![]()
(1)求椭圆C1的方程;
(2)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M,N.当线段AP的中点与MN的中点的横坐标相等时,求h的最小值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练24练习卷(解析版) 题型:解答题
在平面直角坐标系xOy中,已知椭圆C1:
+
=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练24练习卷(解析版) 题型:选择题
已知椭圆C1:
+
=1(a>b>0)与双曲线C2:x2-
=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则( )
(A)a2=
(B)a2=13
(C)b2=
(D)b2=2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com