精英家教网 > 高中数学 > 题目详情

某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次, 如果每次拖7节车厢,则每日能来回10次.
(1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式:
(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数。

解:(1)      
(2)当时,此时y=12,则每日最多运营人数为110×72=7920(人)   
答:这列火车每天来回12次,才能使运营人数最多。每天最多运营人数为7920. 

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(文科题)(本小题12分)
要建造一个无盖长方体水池,底面一边长固定为8m,最大装水量为72m,池底和池壁的造价分别为2元/元/,怎样设计水池底的另一边长和水池的高,才能使水池的总造价最低?最低造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)病人按规定的剂量服用某药物,测得服药后,每毫升血液中含药量(毫克)与时间(小时)满足:前1小时内成正比例递增,1小时后按指数型函数为常数)衰减.如图是病人按规定的剂量服用该药物后,每毫升血液中药物含量随时间变化的曲线.
(1)求函数的解析式;
(2)已知每毫升血液中含药量不低于0.5毫克时有治疗效果,低于0.5毫克时无治疗效果.求病人一次服药后的有效治疗时间为多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知y=是二次函数,且f(0)=8及f(x+1)-f(x)=-2x+1
(1)求的解析式;
(2)求函数的单调递减区间及值域..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设二次函数,方程的两根满足
(1)求实数的取值范围;
(2)试比较的大小.并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=logaxg(x)=2loga(2xt-2)(a>0,a≠1,t∈R).
(1)当t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2时,求a的值;
(2)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题13分)设为函数 图象上不同的两个点,
且 AB∥轴,又有定点 ,已知是线段的中点.

⑴ 设点的横坐标为,写出的面积关于的函数的表达式;
⑵ 求函数的最大值,并求此时点的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、D再回到A. 设表示P点的行程,表示PA的长,求关于的函数解析式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
已知函数满足
(1)若方程有唯一解,求的值;
(2)若函数在区间上不是单调函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案