精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=
(
1
e
)x+2,x≤-1
f(x-1),-1<x≤0
,若f (x)≥x+a“对于任意x∈R恒成立,则常数a的取值范围是(  )
A.(-∞,
1
e
-2)
B.(-∞,-2]C.(-∞,
1
e
-1]
D.(-∞,-1]
①当x≤-1时,f (x)≥x+a即(
1
e
)x+2≥x+a
,也即(
1
e
)x+2
-x≥a,
(
1
e
)x+2
-x递减,所以(
1
e
)x+2
-x的最小值为
1
e
+
1,
此时,a≤
1
e
+
1;
②当-1<x≤0时,f (x)=f(x-1)=(
1
e
)x+1
≥x+a,即为(
1
e
)x+1
-x≥a,
(
1
e
)x+1
-x递减,所以(
1
e
)x+1
-x的最小值为
1
e

此时,a
1
e

③当x≥1时,-x≤-1,
因为f(x)为偶函数,所以f(x)=f(-x)=(
1
e
)-x+2
≥x+a,即(
1
e
)-x+2
-x≥a,
令g(x)=(
1
e
)-x+2
-x,g′(x)=ex-2-1,
当1≤x<2时,g′(x)<0,g(x)递减;当x>2时,g′(x)>0,g(x)递增;
所以x=2时g(x)取得最小值,此时,a≤g(2)=-1;
④当0≤x<1时,-2<-x-1≤-1,f(x)=f(-x)=f(-x-1)=(
1
e
)-x+1
≥x+a,即(
1
e
)-x+1
-x≥a,
令h(x)=(
1
e
)-x+1
-x,h′(x)=ex-1-1<0,h(x)递减,
所以h(x)>h(1)=0,此时a≤0;
综上,要使f (x)≥x+a“对于任意x∈R恒成立,a的取值范围为a≤-1,
故选D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案