精英家教网 > 高中数学 > 题目详情
已知函数,g(x)=x2-2mx+4。
(1)求函数f(x)的单调区间;
(2)若对任意x1∈(0,2),总存在x2∈[1,2]使f(x1)≥ g(x2),求实数m的取值范围。
解:(1)函数f(x)的定义域为(0,+∞)

由f'(x)>0得:1<x<3,由f'(x)<0得:0<x<1或x>3
∴函数f(x)的单调增区间为(1,3);单调减区间为(0,1),(3,+∞)。
(2)由(1)知函数f(x)在区间(0,1)上递减,在区间(1,2)上递增,
∴函数f(x)在区间(0,2)上的最小值为
由于“对任意x1∈(0,2),总存在x2∈[1,2]使f(x1)≥ g(x2)”等价于“g(x)在区间[1,2]上的最小值不大于f(x)在区间(0,2)上的最小值
因此
又g(x)=(x-m)2+4-m2,x∈[1,2],
∴①当m<1时,[g(x)]min=g(1)=5-2m>0,与(*)矛盾;
②当m∈[1,2]时,[g(x)]min=4-m2≥0,与(*)矛盾;
③当m>2时,
综上知,m的取值范围是
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=g(x)与f(x)=loga(x+1)(a>1)的图象关于原点对称.
(1)写出y=g(x)的解析式;
(2)若函数F(x)=f(x)+g(x)+m为奇函数,试确定实数m的值;
(3)当x∈[0,1)时,总有f(x)+g(x)≥n成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=G(x)的图象过原点,其导函数为y=f(x),函数f(x)=3x2+2bx+c且满足f(1-x)=f(1+x).
(1)若f(x)≥0,对x∈[0,3]恒成立,求实数c的最小值.(2)设G(x)在x=t处取得极大值,记此极大值为g(t),求g(t)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=g(x)的图象与函数f(x)=(x-1)2(x≤0)的图象关于直线y=x对称,则函数g(x)的解析式为g(x)=
-
x
+1
(x≥1)
-
x
+1
(x≥1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=g(x)是定义在R上的奇函数,当x>0时,g(x)=log2x,函数f(x)=4-x2,则函数f(x)•g(x)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)+2f(
1x
)=3x,求f(x)的解析式;
(2)已知函数y=g(x)定义域是[-2,3],求y=g(x+1)的定义域.

查看答案和解析>>

同步练习册答案