精英家教网 > 高中数学 > 题目详情

已知数列

(1)观察规律,写出数列的通项公式,它是个什么数列?

(2)若,设 ,求

(3)设为数列的前项和,求

 

【答案】

(1)为等差数列,公差

(2)

(3)

【解析】

试题分析:解:①由条件,

;∴

为等差数列,公差

又知

相减,得

所以

考点:数列的求和

点评:主要是考查了裂项求和和错位相减法求和的综合运用,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列an=
n-1   (n为奇数)
n       (n为偶数)
,则a1+a2+a3+a4+…+a99+a100=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an=(1-2a)n,若
lim
n→∞
an
存在,则a的范围是(  )
A、[0,1]
B、[0,
1
2
)∪(
1
2
,1]
C、[0,1)
D、(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•潍坊二模)已知数列an=2n-1(n∈N*),把数列{an}的各项排成如图所示的三角形数阵,记(m,n)表示该数阵中第m行中从左到右的第n个数,则S(10,6)对应于数阵中的数是
101
101

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州一模)已知数列an=2n-1,数列{bn}的前n项和为Tn,满足Tn=1-bn
(I)求{bn}的通项公式;
(II)试写出一个m,使得
1am+9
是{bn}中的项.

查看答案和解析>>

同步练习册答案