分析 根据函数奇偶性和单调性的关系,解不等式,由此求得a的取值范围,结合一元二次函数的单调性的性质进行求解即可.
解答 解:由题意可得,函数f(x)在(0,+∞)上也是减函数,
2a2+a+1=2(a+$\frac{1}{4}$)2+$\frac{7}{8}$>0,3a2-2a+1=3(a-$\frac{1}{3}$)2+$\frac{2}{3}$>0,
由f(2a2+a+1)<f(3a2-2a+1),
可得 2a2+a+1>3a2-2a+1,即 a(a-3)<0,
求得0<a<3,
函数y=3+2a-a2的对称轴为a=1,抛物线开口向下,
则函数在(0,1]上为增函数,则[1,3)上为减函数,
即函数的单调递增区间为(0,1],单调递减区间为[1,3).
点评 本题主要考查奇函数的性质,函数的单调性的应用,一元二次不等式的解法,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m<0且n<0 | B. | m>0且n<0 | C. | m<0且n=0 | D. | m>0且n=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 是偶函数,也是周期函数 | B. | 是偶函数,但不是周期函数 | ||
| C. | 是奇函数,也是周期函数 | D. | 是奇函数,但不是周期函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M$\underset{?}{≠}$N | B. | M∩N={(-1,1)} | C. | M=N | D. | N$\underset{?}{≠}$M |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1)∪(2,+∞) | B. | (-2,1) | C. | (1,2) | D. | (-∞,-2)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
| 温差x (℃) | 10 | 11 | 13 | 12 | 8 |
| 发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com