精英家教网 > 高中数学 > 题目详情
2.已知f (x)=x3+3ax2+3(a+2)x+1有极大值和极小值,则a的取值范围是(  )
A.(-∞,-1)∪(2,+∞)B.(-2,1)C.(1,2)D.(-∞,-2)∪(1,+∞)

分析 先求导,利用函数既有极大值又有极小值,转化为f′(x)=0有两个不同的根,然后确定a的取值范围.

解答 解:函数的导数为f′(x)=3x2+6ax+3(a+2).
因为函数f(x)既有极大值又有极小值,则f′(x)=0有两个不同的根.
即判别式△>0,即36a2-4×3×3(a+2)>0,
所以a2-a-2>0,解得a>2或a<-1.
故选:A.

点评 本题主要考查函数的极值和导数之间的关系,将条件转化为f′(x)=0有两个不同的根,是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.等差数列{an}中,已知a2=13,a7=3
(1)求数列{an}的通项公式
(2)当数列{an}的前n项和Sn取最大值时,求n
(3)求数列{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.分解因式:2x4+13x3+20x2+11x+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设奇函数f(x)(x∈R)在(-∞,0]上是减函数,且有f(2a2+a+1)<f(3a2-2a+1),求函数y=3+2a-a2的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在函数y=x2-1,y=x3,y=ex,y=lnx中,奇函数是(  )
A.y=x2-1B.y=x3C.y=exD.y=lnx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}中,a1=1,an+1=2nan+4,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图所示茎叶图记录甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)
已知甲组数据的中位数为15,乙组数据的平均数为16.8,则xy的值为40.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知x>0,则使不等式$\frac{{x}^{2}+3x+1}{x}$≥a恒成立的a取值范围是a≤5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知几个命题:①若点P不在平面α内,A、B、C三点都在平面α内,则P、A、B、C四点不在同一平面内;②两两相交的三条直线在同一平面内;③两组对边分别相等的四边形是平行四边形.其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案