分析:(1)求出h(x)的定义域,在定义域内解不等式h′(x)>0,h′(x)>0即得单调区间;
(2)由(1)知h(x)
min=h(0)=0,则当x>-1时,f(x)≥g(x)恒成立,根据-1<x
1<0<x
2时及f(x)、g(x)的单调性可得0>f(x
1)>g(x
1),f(x
2)>g(x
2)>0,再应用不等式的性质即可得到结论;
(3)f
2(x)-xg(x)=ln
2(x+1)-
,令F(x)=ln
2(x+1)-
,利用导数求出F(x)的单调区间,根据最值得一不等式,由此可证明;
解答:解:(1)h(x)=f(x)-g(x)=ln(x+1)-
,x>-1,
h′(x)=
-
=
,
令h′(x)<0,得-1<x<0,则h(x)在(-1,0)上单调递减;
令h′(x)>0,得x>0,则h(x)在(0,+∞)上单调递增.
故h(x)的增区间为(0,+∞),减区间为(-1,0).
(2)由(1)知h(x)
min=h(0)=0,则当x>-1时,f(x)≥g(x)恒成立,
f′(x)=
>0,g′(x)=
>0,
则f(x),g(x)在(-1,+∞)上均单调递增.
易知:0>f(x
1)>g(x
1),f(x
2)>g(x
2)>0,
则-f(x
2)g(x
1)>-f(x
1)g(x
2),
即f(x
1)g(x
2)>f(x
2)g(x
1).
(3)f
2(x)-xg(x)=ln
2(x+1)-
,
令F(x)=ln
2(x+1)-
,
F′(x)=
-
=
| 2(x+1)ln(x+1)-(x2+2x) |
| (x+1)2 |
,
令G(x)=2(x+1)ln(x+1)-(x
2+2x),
则G′(x)=2ln(x+1)-2x,
令H(x)=2ln(x+1)-2x,则H′(x)=
-2=
,
当-1<x<0时,H′(x)>0,则H(x)在(-1,0)上单调递增;
当x>0时,H′(x)<0,则H(x)在(0,+∞)上单调递减,
故H(x)≤H(0)=0,即G′(x)≤0,则G(x)在(-1,+∞)上单调递减;
当-1<x<0时,G(x)>G(0)=0,即F′(x)>0,则F(x)在(-1,0)上单调递增;
当x>0时,G(x)<G(0)=0,
即F′(x)<0,则F(x)在(0,+∞)上单调递减,
故F(x)≤F(0)=0,即f
2(x)≤xg(x).