【题目】甲、乙两人射击,已知甲每次击中目标的概率为,乙每次击中目标的概率为.
(1)两人各射击一次,求至少有一人击中目标的概率;
(2)若制定规则如下:两人轮流射击,每人至多射击2次,甲先射,若有人击中目标即停止射击.
①求乙射击次数不超过1次的概率;
②记甲、乙两人射击次数和为,求的分布列和数学期望.
科目:高中数学 来源: 题型:
【题目】德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数(首项)按照上述规则施行变换后的第6项为1(注:1可以多次出现),则的所有不同值的个数为( )
A.3B.4C.5D.32
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线在第一象限内的点到焦点F的距离为.
(1)求抛物线的方程;
(2)若直线与抛物线C相交于A,B两点,与圆相交于D,E两点,O为坐标原点,,试问:是否存在实数a,使得|DE|的长为定值?若存在,求出a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:
(1)根据频率分布直方图计算该种蔬果日需求量的平均数(同一组中的数据用该组区间中点值代表);
(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为公斤,利润为元.求关于的函数关系式,并结合频率分布直方图估计利润不小于1750元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程为,直线,直线 .以极点为原点,极轴为轴的正半轴建立平面直角坐标系.
(1)求直线,的直角坐标方程以及曲线的参数方程;
(2)已知直线与曲线交于两点,直线与曲线交于两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积=,弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”指半径长与圆心到弦的距离之差。现有圆心角为,半径等于4米的弧田.下列说法不正确的是( )
A. “弦”米,“矢”米
B. 按照经验公式计算所得弧田面积()平方米
C. 按照弓形的面积计算实际面积为()平方米
D. 按照经验公式计算所得弧田面积比实际面积少算了大约0.9平方米(参考数据 )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com