精英家教网 > 高中数学 > 题目详情

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选讲选做题)设函数f(x)=|x-a|-2,若不等式|f(x)|<1的解集为(-2,0)∪(2,4),则实数a=________.
B.(几何证明选讲选做题)如右图,已知PB是圆O的切线,A是切点,D是弧AC上一点,若∠BAC=70°,则∠ADC=________.
C.(坐标系与参数方程)极坐标系中,直线l的极坐标方程为ρsin(θ+数学公式)=2,则极点在直线l上的射影的极坐标是________.

1    110°    (2,
分析:A.利用绝对值不等式的意义解出用参数a表示的解集,利用同一性得出参数a的方程解出a的值.
B.由PB是⊙O的切线得:∠DAB=∠ACD,从而在三角形ACD中即可求得∠ADC.
C.先利用三角函数的和差角公式展开曲线C的极坐标方程的左式,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得直角坐标方程式,在直角坐标系中算出射影的坐标,再利用极坐标间的定义求出其极坐标即可.
解答:A.∵-1<|x-a|-2<1,
∴1<|x-a|<3,
∴1<x-a<3或-3<x-a<-1
∴a+1<x<a+3或a-3<x<a-1
∵不等式的解集是(-2,0)∪(2,4),
a+1=2,a+3=4,a-3=-2,a-1=0应同时成立,解得a=1;
故答案为:1.
B.∵∠DAB=∠ACD,∠BAC=∠DAB+∠CAD=70°,
从而∠ACD+∠CAD=70°,
∴∠ADC=180°-70°=110°.
故答案为:110°.
C.∵ρsin(θ+)=2,
ρsinθ+ρcosθ-4=0,
∴x+y-4=0,
其倾斜角为
原点到直线的距离ρ==2,
∴射影的极坐标为(2,).
故答案为:(2,).
点评:A.考查绝对值不等式的解法,以及解的同一性.同一性在平时学习时不常用,故此处用同一性得到方程,对一般的学生是个易错点.
B.本小题主要考查弦切角、弦切角的应用、圆的切线等基础知识.属于基础题.
C.本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x+1|≥|x+2|的解集为
 

B.(几何证明选做题)如图所示,过⊙O外一点P作一条直线与⊙O交于A,B两点,
已知PA=2,点P到⊙O的切线长PT=4,则弦AB的长为
 

C.(坐标系与参数方程选做题)若直线3x+4y+m=0与圆
x=1+cosθ
y=-2+sinθ
(θ为参数)没有公共点,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(三选一,考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(坐标系与参数方程选做题)在直角坐标系中圆C的参数方程为
x=1+2cosθ
y=
3
+2sinθ
(θ为参数),则圆C的普通方程为
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4

(2)(不等式选讲选做题)设函数f(x)=|2x+1|-|x-4|,则不等式f(x)>2的解集为
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

(3)(几何证明选讲选做题) 如图所示,等腰三角形ABC的底边AC长为6,其外接圆的半径长为5,则三角形ABC的面积是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(A)(几何证明选做题)如图,CD是圆O的切线,切点为C,点B在圆O上,BC=2,∠BCD=30°,则圆O的面积为

(B)(极坐标系与参数方程选做题)极坐标方程ρ=2sinθ+4cosθ表示的曲线截θ=
π
4
(ρ∈R)
所得的弦长为
3
2
3
2

(C)(不等式选做题)  不等式|2x-1|<|x|+1解集是
(0,2)
(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D.若PA=PE,∠ABC=60°,PD=1,PB=9,则EC=
4
4

B. P为曲线C1
x=1+cosθ
y=sinθ
,(θ为参数)上一点,则它到直线C2
x=1+2t
y=2
(t为参数)距离的最小值为
1
1

C.不等式|x2-3x-4|>x+1的解集为
{x|x>5或x<-1或-1<x<3}
{x|x>5或x<-1或-1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列二题中任选一题作答,如果多做,则按所做的第一题评阅记分.)
(A)(选修4-4坐标系与参数方程)曲线
x=cosα
y=a+sinα
(α为参数)与曲线ρ2-2ρcosθ=0的交点个数为
 
个.
(B)(选修4-5不等式选讲)若不等式|x+1|+|x-3| ≥a+
4
a
对任意的实数x恒成立,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案