【题目】已知
,
是两个不重合的平面,在下列条件中,可判断平面
,
平行的是( )
A.
,
是平面
内两条直线,且
,![]()
B.
,
是两条异面直线,
,
,且
,![]()
C.面
内不共线的三点到
的距离相等
D.面
,
都垂直于平面![]()
科目:高中数学 来源: 题型:
【题目】函数
(其中
)的部分图象如图所示,把函数
的图像向右平移
个单位长度,再向下平移1个单位,得到函数
的图像.
![]()
(1)当
时,求
的值域
(2)令
,若对任意
都有
恒成立,求
的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入
万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从
开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)试估计该公司投入
万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入 | 1 | 2 | 3 | 4 | 5 |
销售收益 | 2 | 3 | 2 | 7 |
由表中的数据显示,
与
之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出
关于
的回归直线方程.
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C对应的边分别是a,b,c,且2acosBcosC+2ccosAcosB﹣b=0.
(1)求角B的大小;
(2)若△ABC的面积S=3
,a=3,求sinAsinC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:在三棱锥
中,
面
,
是直角三角形,
,
,
,点
、
、
分别为
、
、
的中点.
![]()
(1)求证:
;
(2)求直线
与平面
所成的角的正弦值;
(3)求二面角
的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com