科目:高中数学 来源: 题型:
徐州古称彭城,三面环山,历来是兵家必争之地,拥有云龙山、户部山、子房山和九里山等四大名山.一位游客来徐州游览,已知该游客游览云龙山的概率为
,游览户部山、子房山和九里山的概率都是
,且该游客是否游览这四座山相互独立.
(1)求该游客至多游览一座
山的概率;
(2)用随机变量
表示
该游客游览的山数,求
的概率分布和数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少
万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列
,每年发放的电动型汽车牌照数为构成数列
,完成下列表格,并写出这两个数列的通项公式;
(2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?
|
|
|
|
| ………… |
|
|
|
|
| ………… |
查看答案和解析>>
科目:高中数学 来源: 题型:
称满足以下两个条件的有穷数列
为
阶“期待数列”:
①
;②
.
(1)若等比数列
为
阶“期待数列”,求公比q及
的通项公式;
(2)若一个等差数列
既是
阶“期待数列”又是递增数列,求该数列的通项公式;
(3)记n阶“期待数列”
的前k项和为
:
(i)求证:
;
(ii)若存在
使
,试问数列
能否为n阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在四棱锥
中,
底面ABCD,底面ABCD是直角梯形,
,
,
,E是PB的中点。
(Ⅰ)求证:平面
平面PBC;
(Ⅱ)若二面角
的余弦值为
,求直线PA
与平面EAC所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
甲校有3600名学生,乙校有5400名学生,丙校有1800名学生.为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,则应在甲校抽取的学生数是___________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com