精英家教网 > 高中数学 > 题目详情
已知动点P与平面上两定点A(-
2
,0),B(
2
,0)
连线的斜率的积为定值-
1
2

(Ⅰ)试求动点P的轨迹方程C;
(Ⅱ)设直线l:y=kx+1与曲线C交于M、N两点,
①当|MN|=
4
2
3
时,求直线l的方程.
②线段MN上有一点Q,满足
MQ
=
1
2
MN
,求点Q的轨迹方程.
分析:(I)根据经过两点的直线的斜率公式,结合题意建立关于点P(x,y)坐标的关系式,化简整理即可得到所求动点P的轨迹方程C;
(II)由(I)求出的轨迹方程与直线y=kx+1消去y,得到关于x的一元二次方程.
①解所得的一元二次方程,得到x1、x2关于k的式子,根据弦长公式列方程解出k=±1,从而得到直线l的方程;
②由线段的中点坐标公式,算出Q坐标关于x1、x2和y1、y2的形式,代入直线方程并结合
MQ
=
1
2
MN
进行化简整理,可得x2+2y2-2y=0.再由直线l与曲线C交于M、N两点,可得△>0,得k≠0从而得到x的取值范围,即可给出点Q的轨迹方程.
解答:解:(Ⅰ)设点P(x,y),则根据题意,有
y
x+
2
y
x-
2
=-
1
2
,整理得
x2
2
+y2=1
.由于x≠±
2

所以求得的曲线C的方程为
x2
2
+y2=1(x≠±
2
)

(Ⅱ)设点M、N的坐标分别为(x1,y1),(x2,y2),
x2
2
+y2=1
y=kx+1.
消去y得:(1+2k2)x2+4kx=0

①解得x1=0,x2=
-4k
1+2k2

|MN|=
1+k2
|x1-x2|=
1+k2
|
4k
1+2k2
|=
4
3
2
,解得:k=±1.
∴直线l的方程x-y+1=0或x+y-1=0;
②设点Q的坐标为(x,y),
MQ
=
1
2
MN

∴点Q为线段MN的中点,可得x=
x1+x2
2
=
-2k
1+2k2

y=kx+1=k•
-2k
1+2k2
+1=
1
1+2k2

消去k,得方程:x2+2y2-2y=0.
因曲线C的方程为
x2
2
+y2=1(x≠±
2
)
,故直线不过点
2
,0)
,即k≠±
2
2

又∵直线l:y=kx+1与曲线C交于M、N两点,
∴△=(-4k)2>0,即k≠0,
因此,x≠0,且x≠±
2
2

综上,所求点Q的轨迹方程为x2+2y2-2y=0(x≠0,且x≠±
2
2
)
点评:本题通过求动点的轨迹方程,考查了向量的坐标运算、直线的斜率公式、直线与圆锥曲线的关系和一元二次方程根的判别式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点P与平面上两定点A(-
2
,0),B(
2
,0)
连线的斜率的积为定值-
1
2

(1)试求动点P的轨迹方程C;
(2)设直线l:y=kx+1与曲线C交于M.N两点,当|MN|=
4
2
3
时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P与平面上两定点A(-1,0),B(1,0)连线的斜率的积为定值-2.
(1)试求动点P的轨迹方程C.
(2)设直线l:y=x+1与曲线C交于M、N两点,求|MN|

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点P与平面上两定点A(-1,0),B(1,0)连线的斜率的积为定值-2.
(1)试求动点P的轨迹方程C.
(2)设直线l:y=x+1与曲线C交于M、N两点,求|MN|

查看答案和解析>>

科目:高中数学 来源:《2.1 椭圆》2013年同步练习(青州二中)(解析版) 题型:解答题

已知动点P与平面上两定点连线的斜率的积为定值
(1)试求动点P的轨迹方程C;
(2)设直线l:y=kx+1与曲线C交于M.N两点,当时,求直线l的方程.

查看答案和解析>>

同步练习册答案