【题目】一座圆拱桥,当水面在如图所示位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽多少米?
![]()
【答案】2
【解析】试题分析; 建立适当的直角坐标系,得到相关各点的坐标,通过设圆的半径,可得圆的方程,然后将点的坐标代入确定圆的方程,设当水面下降1米后可设
的坐标为
根据点在圆上,可求得
的值,从而得到问题的结果.
试题解析;以圆拱顶点为原点,以过圆拱顶点的竖直直线为y轴,建立如图所示的平面直角坐标系.
![]()
设圆心为C,水面所在弦的端点为A,B,则由已知可得A(6,-2),
设圆的半径长为r,则C(0,-r),即圆的方程为x2+(y+r)2=r2.将点A的坐标代入上述方程可得r=10,所以圆的方程为x2+(y+10)2=100.
当水面下降1米后,可设A′(x0,-3)(x0>0),代入x2+(y+10)2=100,解得2x0=2
,即当水面下降1米后,水面宽2
米.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个顶点分别为
,焦点在
轴上,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)点
为
轴上一点,过
作
轴的垂线交椭圆
于不同的两点
,过
作
的垂线交
于点
.求
与
的面积之比.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某DVD光盘销售部每天的房租、人员工资等固定成本为300元,每张DVD光盘的进价是6元,销售单价与日均销售量的关系如表所示:
销售单价(元) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
日均销售量(张) | 480 | 440 | 400 | 360 | 320 | 280 | 240 |
(1)请根据以上数据作出分析,写出日均销售量P(x)(张)关于销售单价x(元)的函数关系式,并写出其定义域;
(2)问这个销售部销售的DVD光盘销售单价定为多少时才能使日均销售利润最大?最大销售利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A、B、C是△ABC的三个内角,向量m=(-1,
),n=(cosA,sinA),且m·n=1.
(1)求角A;
(2)若
=-3,求tanC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,且满足
,求数列
的通项公式.勤于思考的小红设计了下面两种解题思路,请你选择其中一种并将其补充完整.
思路1:先设
的值为1,根据已知条件,计算出
_________,
__________,
_________.
猜想:
_______.
然后用数学归纳法证明.证明过程如下:
①当
时,________________,猜想成立
②假设
(
N*)时,猜想成立,即
_______.
那么,当
时,由已知
,得
_________.
又
,两式相减并化简,得
_____________(用含
的代数式表示).
所以,当
时,猜想也成立.
根据①和②,可知猜想对任何
N*都成立.
思路2:先设
的值为1,根据已知条件,计算出
_____________.
由已知
,写出
与
的关系式:
_____________________,
两式相减,得
与
的递推关系式:
____________________.
整理:
____________.
发现:数列
是首项为________,公比为_______的等比数列.
得出:数列
的通项公式
____,进而得到
____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正方形ABCD和正方形ABEF的边长都是1,并且平面ABCD⊥平面ABEF,点M在AC上移动,点N在BF上移动.若|CM|=|BN|=a(0<a<
).
(1)求MN的长度;
(2)当a为何值时,MN的长度最短.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
.
(1)求f(2)与f
, f(3)与f
;
(2)由(1)中求得结果,你能发现f(x)与f
有什么关系?并证明你的发现;
(3)求f(1)+f(2)+f(3)+…+f(2013)+f
+f
+…+f
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
:
,曲线
:
(
为参数),以坐标原点
为极点,
轴正半轴为极轴,建立极坐标系.
(Ⅰ)求曲线
,
的极坐标方程;
(Ⅱ)曲线
:
(
为参数,
,
)分别交
,
于
,
两点,当
取何值时,
取得最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
,
为自然对数的底数),
是
的导函数.
(Ⅰ)当
时,求证:
;
(Ⅱ)是否存在正整数
,使得
对一切
恒成立?若存在,求出
的最大值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com