【题目】已知函数.
(1)求在区间上的最大值;
(2)若过点存在3条直线与曲线相切,求t的取值范围;
(3)问过点分别存在几条直线与曲线相切?(只需写出结论)
【答案】
【解析】试题分析:(1)求导数,导数等于0求出,再代入原函数解析式,最后比较大小,即可;(2)设切点,由相切得出切线方程,然后列表并讨论求出结果;(3)由(2)容易得出结果.
(1)由得,令,得或,
因为, , , ,
所以在区间上的最大值为.
(2)设过点P(1,t)的直线与曲线相切于点,则
,且切线斜率为,所以切线方程为,
因此,整理得: ,
设 ,则“过点存在3条直线与曲线相切”等价于“有3个不同零点”, =,
与的情况如下:
0 | 1 | ||||
+ | 0 | 0 | + | ||
t+3 |
所以, 是的极大值, 是的极小值,
当,即时,此时在区间和上分别至多有1个零点,所以
至多有2个零点,
当, 时,此时在区间和上分别至多有1个零点,所以
至多有2个零点.
当且,即时,因为,,
所以分别为区间和上恰有1个零点,由于在区间和上单调,所以分别在区间和上恰有1个零点.
综上可知,当过点存在3条直线与曲线相切时,t的取值范围是.
(3)过点A(-1,2)存在3条直线与曲线相切;
过点B(2,10)存在2条直线与曲线相切;
过点C(0,2)存在1条直线与曲线相切.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sinωx+cosωx的最小正周期为π,x∈R,ω>0是常数.
(1)求ω的值;
(2)若f(+)= , θ∈(0,),求sin2θ.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(﹣2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(﹣2)
D.函数f(x)有极大值f(﹣2)和极小值f(2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…为自然对数的底数.
(1)讨论f(x)的单调性;
(2)证明:当x>1时,g(x)>0;
(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若在曲线(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0或y=f(x)的“自公切线”。
下列方程:
①;
②;
③y=3sinx+4cosx;
④
对应的曲线中存在“自公切线”的有( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知图甲中的图象对应的函数y=f(x),则图乙中的图象对应的函数在下列给出的四式中只可能是( )
A.y=f(|x|)
B.y=|f(x)|
C.y=f(﹣|x|)
D.y=﹣f(|x|)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆过点,且圆心在直线上,过点的直线交圆于两点,过点分别做圆的切线,记为.
(Ⅰ)求圆的方程;
(Ⅱ)求证:直线的交点都在同一条直线上,并求出这条直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)根据所给的独立检验临界值表,你最多能有多少把握认为性别与休闲方式有关系?附:独立检验临界值表
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com