精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求在区间上的最大值;

2)若过点存在3条直线与曲线相切,求t的取值范围;

3)问过点分别存在几条直线与曲线相切?(只需写出结论)

【答案】

【解析】试题分析:(1)求导数,导数等于0求出,再代入原函数解析式,最后比较大小,即可;(2)设切点,由相切得出切线方程,然后列表并讨论求出结果;(3)由(2)容易得出结果.

(1),令,得

因为

所以在区间上的最大值为.

2)设过点P1t)的直线与曲线相切于点,则

,且切线斜率为,所以切线方程为

因此,整理得:

,则过点存在3条直线与曲线相切等价于3个不同零点 =

的情况如下:



0


1



+

0


0

+



t+3




所以, 的极大值, 的极小值,

,即时,此时在区间上分别至多有1个零点,所以

至多有2个零点,

时,此时在区间上分别至多有1个零点,所以

至多有2个零点.

,即时,因为

所以分别为区间上恰有1个零点,由于在区间上单调,所以分别在区间上恰有1个零点.

综上可知,当过点存在3条直线与曲线相切时,t的取值范围是.

3)过点A-12)存在3条直线与曲线相切;

过点B210)存在2条直线与曲线相切;

过点C02)存在1条直线与曲线相切.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将一颗骰子先后抛掷2次,观察向上的点数,求:

(1)两数之和为5的概率;

(2)两数中至少有一个奇数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinωx+cosωx的最小正周期为π,x∈R,ω>0是常数.
(1)求ω的值;
(2)若f(+)= , θ∈(0,),求sin2θ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是(  )

A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(﹣2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(﹣2)
D.函数f(x)有极大值f(﹣2)和极小值f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…为自然对数的底数.
(1)讨论f(x)的单调性;
(2)证明:当x>1时,g(x)>0;
(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若在曲线(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0或y=f(x)的“自公切线”。
下列方程:


③y=3sinx+4cosx;

对应的曲线中存在“自公切线”的有( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知图甲中的图象对应的函数y=f(x),则图乙中的图象对应的函数在下列给出的四式中只可能是(  )

A.y=f(|x|)
B.y=|f(x)|
C.y=f(﹣|x|)
D.y=﹣f(|x|)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆过点,且圆心在直线上,过点的直线交圆两点,过点分别做圆的切线,记为.

Ⅰ)求圆的方程;

Ⅱ)求证:直线的交点都在同一条直线上,并求出这条直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.

(1)根据以上数据建立一个2×2的列联表;

(2)根据所给的独立检验临界值表,你最多能有多少把握认为性别与休闲方式有关系?附:独立检验临界值表

P(K2k0)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案