精英家教网 > 高中数学 > 题目详情
18.若{an}是首项为1,公差为2的等差数列,则a1C90+a2C91+…+a10C99=5120.

分析 an=1+2(n-1)=2n-1.由于S10=a1C90+a2C91+…+a10C99,利用“倒序相加”可得2S10=(a1+a10)29,即可得出.

解答 解:an=1+2(n-1)=2n-1.
∴S10=a1C90+a2C91+…+a10C99
S10=a10C99+…+a2C91+a1C90
∴2S10=(a1+a10)29=20×512,
∴S10=5120.
故答案为:5120.

点评 本题考查了等差数列通项公式及其性质、二项式定理、“倒序相加”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若$\overrightarrow{OA}$,$\overrightarrow{OB}$为不共线的向量,则P,A,B三点共线的充要条件为$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$且λ+μ=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知($\sqrt{x}$+$\frac{1}{2}$$\root{4}{\frac{1}{x}}$)n展开式中,前三项系数成等差数列,求展开式中所有有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,若cos2A+cos2B>2cos2C,则△ABC的形状是(  )
A.钝角三角形B.直角三角形C.锐角三角形D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若α,β均为锐角,且sinα-sinβ=-$\frac{1}{2}$,cosα-cosβ=$\frac{1}{2}$,则tan(α-β)=(  )
A.$\frac{\sqrt{7}}{3}$B.-$\frac{\sqrt{7}}{3}$C.±$\frac{\sqrt{7}}{3}$D.-$\frac{3\sqrt{7}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.试在数轴上表示出不等式的解.
(1)x(x2-1)>0;
(2)|x-1|<|x-3|;
(3)$\sqrt{x-1}$-$\sqrt{2x-1}$≥$\sqrt{3x-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别PM2.5浓度(微克/立方米)频数(天)频率
第一组(0,25]50.25
第二组(25,50]100.5
第三组(50,75]30.15
第四组(75,100)20.1
(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,点M是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点,以M为圆心的圆与x轴相切于椭圆的焦点F,圆M与y轴相交于P,Q两点.若△PQM是锐角三角形,则该椭圆离心率的取值范围是($\frac{\sqrt{6}-\sqrt{2}}{2}$,$\frac{\sqrt{5}-1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在△ABC中,AB=5,AC=7,∠BAC=90°,G是△ABC的重心,过G的平面α与BC平行,AB∩α=M,AC∩α=N,则MN=$\frac{2}{3}$$\sqrt{74}$.

查看答案和解析>>

同步练习册答案