精英家教网 > 高中数学 > 题目详情

【题目】已知直线l与椭圆交于AB两点,点P是椭圆C上异于AB的一个动点,点Q在直线AB上,满足(为坐标原点)

1)求点Q的轨迹方程;

2)求四边形OAPB的面积S的最大值.

【答案】1;(2 最大值12

【解析】

1)由条件用Q点坐标表示出P点坐标,再代入椭圆方程即可得到Q点的轨迹方程;

2)由Q的轨迹与直线l有交点,求出km的不等关系,由,求出的表达式,然后换元,利用km的不等关系求出新的自变量的范围,从而可求面积的最大值.

1)设

有:

又点P在椭圆C上,则,即

所以点Q的轨迹方程:

2)设,由

消去y可得:

又直线l与椭圆有公共点;

所以有:

,即

原点到直线l的距离为,又,则

,则

时,即时,有最大值4

S有最大值12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】x[01]时,下列关于函数y=的图象与的图象交点个数说法正确的是(  )

A. 时,有两个交点B. 时,没有交点

C. 时,有且只有一个交点D. 时,有两个交点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,分别为的中点,.

(1)求证:

(2)若直线和平面所成角的正弦值等于,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为α为参数),将C上每一点的横坐标保持不变,纵坐标变为原来的3倍,得曲线C1.以O为极点,x轴正半轴为极轴建立极坐标系.

1)求C1的极坐标方程

2)设MNC1上两点,若OMON,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形的边长为2, 的中点,以点为圆心, 长为半径作圆,点是该圆上的任一点,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是(  )

A.2017年第一季度GDP增速由高到低排位第5的是浙江省.

B.与去年同期相比,2017年第一季度的GDP总量实现了增长.

C.2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1

D.去年同期河南省的GDP总量不超过4000亿元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产某种产品,一条流水线年产量为件,该生产线分为两段,流水线第一段生产的半成品的质量指标会影响第二段生产成品的等级,具体见下表:

第一段生产的半成品质量指标

第二段生产的成品为一等品概率

0.2

0.4

0.6

第二段生产的成品为二等品概率

0.3

0.3

0.3

第二段生产的成品为三等品概率

0.5

0.3

0.1

从第一道生产工序抽样调查了件,得到频率分布直方图如图:

若生产一件一等品、二等品、三等品的利润分别是元、元、元.

(Ⅰ)以各组的中间值估计为该组半成品的质量指标,估算流水线第一段生产的半成品质量指标的平均值;

(Ⅱ)将频率估计为概率,试估算一条流水线一年能为该公司创造的利润;

(Ⅲ)现在市面上有一种设备可以安装到流水线第一段,价格是万元,使用寿命是年,安装这种设备后,流水线第一段半成品的质量指标服从正态分布,且不影响产量.请你帮该公司作出决策,是否要购买该设备?说明理由.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足x24ax+3a20a0),命题q:实数x满足x25x+60

1)若a1,且pq为真命题,求实数x的取值范围;

2)若pq的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中a为常数,且曲线在其与y轴的交点处的切线记为,曲线在其与x轴的交点处的切线记为,且

之间的距离;

若存在x使不等式成立,求实数m的取值范围;

对于函数的公共定义域中的任意实数,称的值为两函数在处的偏差求证:函数在其公共定义域内的所有偏差都大于2.

查看答案和解析>>

同步练习册答案