精英家教网 > 高中数学 > 题目详情
((本小题满分12分)在直三棱柱ABC—A1B1C1中,CA=CB=CC1=2,,E、F分别是BA、BC的中点,G是AA1上一点,且
(Ⅰ)确定点G的位置;
(Ⅱ)求三棱锥C1—EFG的体积.  

(1)的中点。
(2)
(Ⅰ)取AC的中点D,连结DE、DG,则ED∥BC
   


EG,ED
连结∥DG
是AC的中点,的中点。…………6分
(Ⅱ)∥EF,平面EFG
∥平面EFG
,G是的中点

………………6分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC,直线AM与直线PC所成的角为60°,又AC=1,BC=2PM=2,∠ACB="90° "

(1)求证:AC⊥BM;
(2)求二面角M-AB-C的余弦值
(3求P到平面MAB的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,四边形中,.将四边形沿对角线折成四面体,使平面平面,则下列结论正确的是
A.B.
C.与平面所成的角为D.四面体的体积为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
  已知:如图,长方体中,分别是棱,上的点,,.
  (1) 求异面直线所成角的余弦值;
  (2) 证明平面
  (3) 求二面角的正弦值.
                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)
如图,平面ABEF平面ABCD,四边形ABEF与ABCD都是直角梯形,
(I)证明:C,D,F,E四点共面;
(II)设AB=BC=BE,求二面角A—ED—B的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.     
(Ⅰ)若在边BC上存在一点Q,使PQ⊥QD,求a的取值范围;
(Ⅱ)当边BC上存在唯一点Q,使PQ⊥QD时,求二面角A-PD-Q的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在三棱锥中,, 点分别在棱上,且

(I)求证:平面
(II)当的中点时,求与平面所成的角的大小;
(III)是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到点,且在平面BCD上的射影O恰好在CD上.
(1)、求证:
(2)、求证:平面平面
(3)、求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设直线的方向向量是,平面的法向量是,则下列推理中
           ②
           ④
中正确的命题序号是              

查看答案和解析>>

同步练习册答案