精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,在三棱锥中,, 点分别在棱上,且

(I)求证:平面
(II)当的中点时,求与平面所成的角的大小;
(III)是否存在点使得二面角为直二面角?并说明理由.

(I)证明略
(II)
(III)存在,理由略
解:(法1)(Ⅰ)∵,∴PA⊥底面ABC,∴PA⊥BC.又,∴AC⊥BC.∴BC⊥平面PAC.(4分)
(Ⅱ)∵D为PB的中点,DE//BC,∴
又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,∵PA⊥底面ABC,
∴PA⊥AB,又PA=AB,∴△ABP为等腰直角三角形,
,∴在Rt△ABC中,,∴.
∴在Rt△ADE中,
与平面所成的角的大小.(8分)
(Ⅲ)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角的平面角,∵PA⊥底面ABC,
∴PA⊥AC,∴.∴在棱PC上存在一点E,使得AE⊥PC,
这时,故存在点E使得二面角是直二面角.(12分)
(法2)如图,以A为原煤点建立空间直角坐标系,设
由已知可得.
(Ⅰ)∵,∴
∴BC⊥AP.又∵,∴BC⊥AC,∴BC⊥平面PAC.(4分)
(Ⅱ)∵D为PB的中点,DE//BC,∴E为PC的中点,
,∴又由(Ⅰ)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足为点E.∴∠DAE是AD与平面PAC所成的角,


与平面所成的角的大小。(8分)
(Ⅲ)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角的平面角,∵PA⊥底面ABC,
∴PA⊥AC,∴.∴在棱PC上存在一点E,
使得AE⊥PC,这时
故存在点E使得二面角是直二面角.(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)

在正方体中,E,F分别是CD,A1D1中点
(1)求证:AB1⊥BF;
(2)求证:AE⊥BF;
(3)棱CC1上是否存在点P,使BF⊥平面AEP,若存在,
确定点P的位置;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)在直三棱柱ABC—A1B1C1中,CA=CB=CC1=2,,E、F分别是BA、BC的中点,G是AA1上一点,且
(Ⅰ)确定点G的位置;
(Ⅱ)求三棱锥C1—EFG的体积.  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是正方体的一条对角线,则这个正方体中面对角线与异面的有(  )   
A.0条B.4条C.6条D.12条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,矩形ABCD,PA⊥平面ABCD,M、N、R分别是AB、PC、CD的中点。
①求证:直线AR∥平面PMC;
②求证:直线MN⊥直线AB。
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分12分)
已知正方体ABCD—A1B1C1D1,其棱长为2,O是底ABCD对角线的交点。

求证:
(1)C1O∥面AB1D1;
(2)A1C⊥面AB1D1。 
(3)若M是CC1的中点,求证:平面AB1D1⊥平面MB1D1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图所示,正方形和矩形所在平面相互垂直,的中点.
(I)求证:
(Ⅱ)若直线与平面成45o角,
求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题14分).在四棱锥中,底面是矩形,平面.以的中点为球心、为直径的球面交于点,交于点
(1)求直线与平面所成的角的正弦值;
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,为正三角形,平面ABC,AD//BE,且BE=AB+2AD,P是EC的中点。
求证:(1)PD//平面ABC;
(2)EC平面PBD。

查看答案和解析>>

同步练习册答案