精英家教网 > 高中数学 > 题目详情
(满分12分)
已知正方体ABCD—A1B1C1D1,其棱长为2,O是底ABCD对角线的交点。

求证:
(1)C1O∥面AB1D1;
(2)A1C⊥面AB1D1。 
(3)若M是CC1的中点,求证:平面AB1D1⊥平面MB1D1
证明略
证明:
连结,设连结是正方体 
 
是平行四边形
                                       
分别是的中点,
是平行四边形                                        

                                              4分
(2)                        
,                          
                                              
同理可证,                                         
                  8分
(3)设B1D1的中点为N,则AN⊥B1D1,MN⊥B1D1,则



(也可以通过定义证明二面角是直二面角)         12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,正方形的边长都是1,平面平面,点上移动,点上移动,若

(I)求的长;
(II)为何值时,的长最小;
(III)当的长最小时,求面与面所成锐二面角余弦值的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)
如图,平面ABEF平面ABCD,四边形ABEF与ABCD都是直角梯形,
(I)证明:C,D,F,E四点共面;
(II)设AB=BC=BE,求二面角A—ED—B的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在三棱锥中,, 点分别在棱上,且

(I)求证:平面
(II)当的中点时,求与平面所成的角的大小;
(III)是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知三棱锥A-PBC ∠ACB=90°
AB=20  BC=4  PAPC,D为AB中点且△PDB为正三角形
(1)求证:BC⊥平面PAC;
(2)求三棱锥D-PBC的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四棱锥的底面为菱形,平面分别为的中点。
(I)求证:平面
  (Ⅱ)求三棱锥的体积;
(Ⅲ)求平面与平面所成的锐二面角大小的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
在长方体ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求三棱锥E-ACD1的体积;
(3)AE等于何值时,二面角D1—EC—D的大小为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图所示,在四棱台中, 底面ABCD是正方形,且底面 , .
(1)求异面直线所成角的余弦值;
(2)试在平面中确定一个点,使得平面
(3)在(2)的条件下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

三棱柱底面是边长为1cm的正三角形,侧面是长方形,侧棱长为4cm,一个小虫从A点出发沿表面一圈到达点,则小虫所行的最短路程为__________cm

查看答案和解析>>

同步练习册答案