精英家教网 > 高中数学 > 题目详情
(本题满分14分)如图,正方形的边长都是1,平面平面,点上移动,点上移动,若

(I)求的长;
(II)为何值时,的长最小;
(III)当的长最小时,求面与面所成锐二面角余弦值的大小.

(1)
(2)
(3)
解:(Ⅰ)作MP∥AB交BC于点P,NQ∥AB交BE于点Q,连结PQ,依题意可得MP∥NQ,且MP=NQ,

即MNQP是平行四边形,∴  MN="PQ."
由已知,CM=BN=a,CB=AB=BE=1,
∴  AC=BF=

即 

                         ………………4分
(Ⅱ)由(Ⅰ),所以,当
即M、N分别移动到AC、BF的中点时,MN的长最小,最小值为 ………………9分
(Ⅲ)取MN的中点G,连结AG、BG,
∵  AM=AN,BM=BN,G为MN的中点
∴  AG⊥MN,BG⊥MN,∠AGB即为二面角A-MN-B的平面角,


 
又AG=BG=,所以,由余弦定理有

             
所求余弦值为               …14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)
各棱长均为2的斜三棱柱ABC—DEF中,已知BF⊥AE,
BF∩CE=O,AB=AE,连结AO。
(I)求证:AO⊥平面FEBC。
(II)求二面角B—AC—E的大小。
(III)求三棱锥B—DEF的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正三棱锥的底面边长为,高为,则此棱锥的侧面积等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)
已知四棱锥中,平面,底面是直角梯形,的重心,的中点,上,且

(1)求证:
(2)当二面角的正切值为多少时,
平面
(3)在(2)的条件下,求直线与平面成角
的正弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)

在正方体中,E,F分别是CD,A1D1中点
(1)求证:AB1⊥BF;
(2)求证:AE⊥BF;
(3)棱CC1上是否存在点P,使BF⊥平面AEP,若存在,
确定点P的位置;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)

如图4,正方体中,点E在棱CD上。
(1)求证:
(2)若E是CD中点,求与平面所成的角;
(3)设M在上,且,是否存在点E,使平面⊥平面,若存在,指出点E的位置,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,侧面均为正方形,∠,点是棱的中点.

(Ⅰ)求证:⊥平面
(Ⅱ)求证:平面
(Ⅲ)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图, 在四棱锥中,顶点在底面上的射影恰好落在的中点上,又∠,且
=1:2:2.

(1) 求证:  
(2) 若, 求直线所成的角的余弦值;
(3) 若平面与平面所成的角为, 求的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分12分)
已知正方体ABCD—A1B1C1D1,其棱长为2,O是底ABCD对角线的交点。

求证:
(1)C1O∥面AB1D1;
(2)A1C⊥面AB1D1。 
(3)若M是CC1的中点,求证:平面AB1D1⊥平面MB1D1

查看答案和解析>>

同步练习册答案