精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
x
+alnx(a≠0,a∈R)

(Ⅰ)若a=1,求函数f(x)的极值和单调区间;
(II)若在区间[1,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.
(I)因为f′(x)=-
1
x2
+
a
x
=
ax-1
x2
,(2分)
当a=1,f′(x)=
x-1
x2

令f'(x)=0,得x=1,(3分)
又f(x)的定义域为(0,+∞),f'(x),f(x)随x的变化情况如下表:
x (0,1) 1 (1,+∞)
f'(x) - 0 +
f(x) 极小值
所以x=1时,f(x)的极小值为1.(5分)
f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1);(6分)
(II)因为f′(x)=-
1
x2
+
a
x
=
ax-1
x2
,且a≠0,
令f'(x)=0,得到x=
1
a

若在区间[1,e]上存在一点x0,使得f(x0)<0成立,
其充要条件是f(x)在区间[1,e]上的最小值小于0即可.(7分)
(1)当x=
1
a
<0

即a<0时,f'(x)<0对x∈(0,+∞)成立,
所以,f(x)在区间[1,e]上单调递减,
故f(x)在区间[1,e]上的最小值为f(e)=
1
e
+alne=
1
e
+a

1
e
+a<0
,得a<-
1
e
,即a∈(-∞,-
1
e
)
(9分)
(2)当x=
1
a
>0
,即a>0时,
①若e≤
1
a
,则f'(x)≤0对x∈[1,e]成立,
所以f(x)在区间[1,e]上单调递减,
所以,f(x)在区间[1,e]上的最小值为f(e)=
1
e
+alne=
1
e
+a>0

显然,f(x)在区间[1,e]上的最小值小于0不成立(11分)
②若1<
1
a
<e
,即a>
1
e
时,则有
x (1,
1
a
)
1
a
(
1
a
,e)
f'(x) - 0 +
f(x) 极小值
所以f(x)在区间[1,e]上的最小值为f(
1
a
)=a+aln
1
a

f(
1
a
)=a+aln
1
a
=a(1-lna)<0

得1-lna<0,解得a>e,即a∈(e,+∞).(13分)
综上,由(1)(2)可知:a∈(-∞,-
1
e
)∪(e,+∞)
符合题意.(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案