精英家教网 > 高中数学 > 题目详情
18.在△ABC中,a=1,B=45°,△ABC的面积S=2,则△ABC的外接圆的直径为5$\sqrt{2}$.

分析 先根据三角形面积公式求得c边的长,进而利用余弦定理求得b,最后根据正弦定理利用$\frac{b}{sinB}$,求得三角形外接圆的直径.

解答 解:在△ABC中,∵S=$\frac{1}{2}$acsinB=2,
∴$\frac{1}{2}$×1×c×sin45°=2,
∴c=4$\sqrt{2}$
∴b2=a2+c2-2accosB=1+32-2×1×4$\sqrt{2}$×cos45°,
∴b2=25,b=5.
∴△ABC的外接圆的直径等于$\frac{b}{sinB}$=5$\sqrt{2}$
故答案为:5$\sqrt{2}$.

点评 本题主要考查了正弦定理和余弦定理的应用.作为正弦定理和余弦定理的变形公式也应熟练掌握,以便做题时方便使用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=x2-alnx(常数a>0).
(1)当a=3时,求曲线y=f(x)在点(1,f(1)处的切线方程;
(2)讨论函数f(x)在区间(1,ea)上零点的个数(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线2x+my=2m-4与直线mx+2y=m-2平行,则m的值为(  )
A.m=-2B.m=±2C.m=0D.m=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(Ⅰ)计算lg8+3lg5;
(Ⅱ)计算(0.027)${\;}^{-\frac{1}{3}}$-(-$\frac{1}{7}$)-2+(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}$-($\sqrt{2}$-1)0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x2-6x+5≤0},$B=\{x|y=\sqrt{x-3}\}$,A∩B=(  )
A.[1,3]B.[1,5]C.[3,5]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知曲线$y=\frac{1}{3}{x^3}+\frac{4}{3}$,求曲线在点(2,4)处的切线与坐标轴围成的三角形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点A(0,1),B(-2,3),C(-1,2),D(1,5),则向量$\overrightarrow{AC}$在$\overrightarrow{BD}$方向上的投影为$-\frac{\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简:
(1)$\frac{-sin(180°+α)+sin(-α)-tan(360°+α)}{tan(α+180°)+cos(-α)+cos(180°-α)}$
(2)$\frac{{cos({α-\frac{π}{2}})}}{{sin({\frac{5π}{2}+α})}}•sin({π-α})•cos({2π+α})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某人经营一个抽奖游戏,顾客花费3元钱可购买一次游戏机会,每次游戏中,顾客从标有黑1、黑2、黑3、黑4、红1、红3的6张卡片中随机抽取2张,并根据摸出的卡片的情况进行兑奖,经营者将顾客抽到的卡片情况分成以下类别:
A:同花顺,即卡片颜色相同且号码相邻;
B:同花,即卡片颜色相同,但号码不相邻;
C:顺子,即卡片号码相邻,但颜色不同;
D:对子,即两张卡片号码相同;
E:其他,即A,B,C,D以外的所有可能情况,
若经营者打算将以上五种类别中最不容易发生的一种类别对应顾客中一等奖,最容易发生的一种类别对应顾客中二等奖,其他类别对应顾客中三等奖.
(1)一、二等奖分别对应哪一种类别?(写出字母即可)
(2)若经营者规定:中一、二、三等奖,分别可获得价值9元、3元、1元的奖品,假设某天参与游戏的顾客为300人次,试估计经营者这一天的盈利.

查看答案和解析>>

同步练习册答案