已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.
![]()
(Ⅰ)证明PQ⊥平面ABCD;
(Ⅱ)求异面直线AQ与PB所成的角;
(Ⅲ)求点P到平面QAD的距离.
(Ⅰ)由P-ABCD与Q-ABCD都是正四棱锥,得到PO⊥平面ABCD,QO⊥平面ABCD.
从而P、O、Q三点在一条直线上,所以PQ⊥平面ABCD.
(Ⅱ)
.(Ⅲ)
.
【解析】
试题分析:(Ⅰ)连结AC、BD,设
.
由P-ABCD与Q-ABCD都是正四棱锥,所以PO⊥平面ABCD,QO⊥平面ABCD.
从而P、O、Q三点在一条直线上,所以PQ⊥平面ABCD.
(Ⅱ)由题设知,ABCD是正方形,所以AC⊥BD.
由(Ⅰ),QO⊥平面ABCD. 故可分别以直线CA、DB、QP为x轴、y轴、z轴建立空间直角坐标系(如图),由题条件,相关各点的坐标分别是P(0,0,1),A(
,0,0),Q(0,0,-2),B(0,
,0).
所以![]()
![]()
![]()
于是
.
从而异面直线AQ与PB所成的角是
.
(Ⅲ)由(Ⅱ),点D的坐标是(0,-
,0),
,
,设
是平面QAD的一个法向量,由
![]()
得
.
取x=1,得
.
所以点P到平面QAD的距离
.
考点:本题主要考查立体几何中的垂直关系,距离及角的计算。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程。本题解法较多,特别是求角及距离时,运用了“向量法”,实现了问题的有效转化。对考生计算能力要求较高
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
![]()
(1)证明PQ⊥平面ABCD;
(2)求异面直线AQ与PB所成的角;
(3)求点P到平面QAD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
![]()
(1)证明PQ⊥平面ABCD;
(2)求异面直线AQ与PB所成的角;
(3)求点P到平面QAD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)证明PQ⊥平面ABCD;
(2)求异面直线AQ和PB所成的角;
(3)求点P到平面QAD的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com