精英家教网 > 高中数学 > 题目详情
函数f(x)(x∈R)的图象如图所示,则函数g(x)=logaf(x)(0<a<1)的减区间是(  )
A、(0,
1
2
B、(-∞,0)∪[
1
2
,+∞)
C、[
a
,1]
D、[
a
a+1
]
考点:函数的图象
专题:函数的性质及应用
分析:设t=f(x),则y=at,然后利用复合函数的单调性确定单调减区间即可.
解答: 解:设t=f(x),则y=at,因为0<a<1,所以外层函数y=at,为单调递减函数,要使函数g(x)=af(x)的单调递减,
则根据复合函数的单调性的性质可知,t=f(x)必须为增函数,
由图象可知函数t=f(x)的增区间为(0,
1
2
).
故选:A.
点评:本题主要考查复合函数的单调性的判断,要求熟练掌握复合函数单调性与内外层函数单调性的关系:同增异减.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若集合A={α|α是第一象限角},B={β|β是锐角},C={γ|γ<90°},则(  )
A、A⊆CB、A∩C=B
C、A∪B=AD、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的部分图象如图所示,则f(x)的解析式可能为(  )
A、f(x)=2sin(
x
2
-
π
6
B、f(x)=
2
cos(4x+
π
4
C、f(x)=2cos(
x
2
-
π
3
D、f(x)=2sin(4x+
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线kx-y+k+1=0(k∈R)上存在点(x,y)满足
x+y-3≤0
x-2y-3≤0
x≥1
,则实数k的取值范围为(  )
A、[-
5
3
,+∞)
B、(-∞,-
5
3
]
C、[-1,
1
2
]
D、[-
1
4
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={x|1≤x≤7,x∈Z},A={1,3,5,7},B={2,4,5},则B∩(∁UA)=(  )
A、{5}
B、{2,4}
C、{2,4,5,6}
D、{1,3,5,6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(x-a)2,a是大于零的常数.
(1)当a=1时,求f(x)的极值;
(2)若函数f(x)在区间[1,2]上为单调递增函数,求实数a的取值范围;
(3)证明:曲线y=f(x)上存在一点P,使得曲线y=f(x)上总有两点M、N且
MP
=
PN
成立,并写出点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a(x-1)2+x-1,g(x)=lnx.
(Ⅰ)若a=1,求F(x)=g(x)-f(x)在(0,+∞)上的最小值;
(Ⅱ)证明:对任意的正整数n,不等式2+
3
4
+
4
9
+…+
n+1
n
>ln(n+1)都成立;
(Ⅲ)是否存在实数a(a>0),使得方程
2g(x)
x
=f′(x+1)-(4a-1)在区间(
1
e
,e)内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2-2x+2-k)ex,k∈R.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)在区间[0,1]上的最小值为e,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在边长为4的正方形ABCD上有一动点P,P沿着折线BCDA由点B向点A移动(点P与A、B不重合),设P点移动的路程为x,△ABP的面积为y.
(1)求△ABP的面积与P点移动的路程间的函数关系式;
(2)作出函数的图象,并根据图象求出值域.

查看答案和解析>>

同步练习册答案