精英家教网 > 高中数学 > 题目详情
函数f(x)=ax2+3ax+1,若f(x)>f′(x)对一切x∈R恒成立,则实数a的取值范围是( )
A.a<
B.a≥0
C.0<a<
D.0≤a<
【答案】分析:本题先求出函数f(x)的导数,利用f(x)>f′(x)化简得到含参数a的二次不等式ax2+ax+1-3a>0对一切x∈R恒成立,构造函数得到形式上的二次函数g(x)=ax2+ax+1-3a后,对于g(x)>0恒成立问题,要注意对参数a分类讨论,容易地得出解答.
解答:解:因为f′(x)=2ax+3a,所以由f(x)>f′(x)得ax2+3ax+1>2ax+3a,即有:ax2+ax+1-3a>0对一切x∈R恒成立,
设g(x)=ax2+ax+1-3a,
①当a=0时,g(x)=1>0恒成立,
②当a≠0时,若使g(x)=ax2+ax+1-3a>0恒成立,由g(x)=的对称轴x=,则有:
,即,得
综合①②得实数a的取值范围是:
故应选:D
点评:本题考查一元二次不等式的应用,含参不等式的恒成立问题的求解,综合考查了利用函数的倒数来解决问题的能力,分类讨论和转化与化归思想的应用;对运算能力,思维能力亦有所要求.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx(a,b是常数,且a≠0),f(2)=0,且方程f(x)=x有两个相等的实数根.
(1)求f(x)的解析式;
(2)当x∈[0,3]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在x=1处的切线垂直于y轴.
(Ⅰ)用a分别表示b和c;
(Ⅱ)当bc取得最大值时,写出y=f(x)的解析式;
(Ⅲ)在(Ⅱ)的条件下,g(x)满足
43
f(x)-6
=(x-2)g(x)(x>2),求g(x)的最大值及相应x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+ln(x+1).
(Ⅰ)当a=
1
4
时,求函数f(x)的单调区间;
(Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围;
(Ⅲ)求证:(1+
2
2×3
)×(1+
4
3×5
)×(1+
8
5×9
)…(1+
2n
(2n-1+1)(2n+1)
)<e
(其中,n∈N*,e是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b,c(a≠0)满足
a
m+2
+
b
m+1
+
c
m
=0(m>0)
,对于函数f(x)=ax2+bx+c,af(
m
m+1
)
与0的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,F(x)=
f(x)(x>0)
-f(x)(x<0)

(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)设m•n<0,m+n>0,a>0且f(x)为偶函数,判断F(m)+F(n)能否大于零.

查看答案和解析>>

同步练习册答案