精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx(a,b是常数,且a≠0),f(2)=0,且方程f(x)=x有两个相等的实数根.
(1)求f(x)的解析式;
(2)当x∈[0,3]时,求函数f(x)的值域.
分析:(1)由f(2)=0,且f(x)=x有两个相等的实数根,求出a、b的值,从而得f(x)的解析式;
(2)画出f(x)的图象,结合图象求出f(x)在x∈[0,3]时的最值,即得值域.
解答:解:(1)∵f(2)=0,∴4a+2b=0①;
又方程f(x)=x有两个相等的实数根,
即ax2+(b-1)x=0有两个相等的实数根,
∴(b-1)2=0②;
由①②可得,a=-
1
2
,b=1,
∴f(x)=-
1
2
x2+x;
(2)由(1)知,f(x)=-
1
2
x2+x对称轴为=1,开口向下,
如图,精英家教网
由图可知,当∈[0,3]时,f(x)max=f(1)=
1
2
,f(x)min=f(3)=-
3
2

∴f(x)在x∈[0,3]时的值域是[-
3
2
1
2
].
点评:本题考查了求函数的解析式以及利用函数的图象与性质求最值,从而得值域的问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案