精英家教网 > 高中数学 > 题目详情
设变量x,y满足约束条件
x-y+2≤0
x+y-7≤0
x≥1
,则
y
x
的最大值为(  )
A、
9
5
B、3
C、4
D、6
分析:本题主要考查线性规划的基本知识,先画出约束条件
x-y+2≤0
x+y-7≤0
x≥1
的可行域,然后分析
y
x
的几何意义,结合图象,用数形结合的思想,即可求解.
解答:精英家教网解:满足约束条件
x-y+2≤0
x+y-7≤0
x≥1
的可行域,
如下图所示:
又∵
y
x
表示的是可行域内一点与原点连线的斜率
当x=
5
2
,y=
9
2
时,
y
x
有最小值
9
5

当x=1,y=6时,
y
x
有最大值6
故选:D
点评:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
y≤2
3
x-3y≤0
x+
3
y-2
3
≥0
,则目标函数u=x2+y2的最大值M与最小值N的比
M
N
=(  )
A、
4
3
3
B、
16
3
3
C、
4
3
D、
16
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
x+y≥2
x≤1
y≤2
,则目标函数z=-x+y的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河西区一模)设变量x、y满足约束条件
y≥0
x-y+1≥0
x+y-3≤0
,则z=2x+y的最大值为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)设变量x,y满足约束条件
2x-y≤0
x-3y+5≥0
x≥0
,则目标函数z=x-y的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)设变量x,y满足约束条件
x+1≥0
x-y+1≤0
x+y-2≤0
,则z=4x+y的最大值为(  )

查看答案和解析>>

同步练习册答案