精英家教网 > 高中数学 > 题目详情
5.下列不等式一定成立的是(  )
①lg(x2+$\frac{1}{4}$)≥lg x(x>0); ②sin x+$\frac{1}{sinx}$≥2(x≠kπ,k∈Z);
③x2+1≥2|x|(x∈R);  ④$\frac{1}{{x}^{2}+1}$>1(x∈R).
A.①②B.②③C.①③D.②④

分析 由基本不等式求最值的规则,逐个选项验证可得.

解答 解:①当x>0时,由基本不等式可得x2+$\frac{1}{4}$≥2•x•$\frac{1}{2}$=x,
∴lg(x2+$\frac{1}{4}$)≥lgx,当且仅当x=$\frac{1}{2}$时取等号,故正确;
②sinx可以为负值,故sinx+$\frac{1}{sinx}$≥2错误;
③由基本不等式可得x2+1=|x|2+1≥2|x|,当且仅当|x|=1时取等号,故正确;
④举反例,当x=0时,可得$\frac{1}{{x}^{2}+1}$=1,故错误.
故选:C.

点评 本题考查基本不等式求最值,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.(1)由动点P向圆x2+y2=1引两条切线PA,PB,切点分别为A,B,∠APB=60°,求动点P的轨迹方程
(2)已知圆x2+y2-x-8y+m=0与直线x+2y-6=0相交于P、Q两点,定点R(1,1),若PR⊥QR,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.利用斜二测画法画边长为3cm的正方形的直观图,正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a,b,c满足a<b<c且ac<0,则下列选项中一定成立的是(  )
A.ab<acB.c(a-b)>0C.ab2<cb2D.ac(2a-2c)>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)的图象与函数$g(x)={({\frac{1}{2}})^x}$的图象关于直线y=x对称,则f(x2-1)的单调减区间为(  )
A.(-∞,1)B.(1,+∞)C.(0,1)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过点(-1,2)且与直线y=$\frac{{\sqrt{3}}}{3}$x+2垂直的直线方程为(  )
A.y-2=$\frac{\sqrt{3}}{3}$(x+1)B.y-2=$\sqrt{3}$(x+1)C.y-2=-$\frac{\sqrt{3}}{3}$(x+1)D.y-2=-$\sqrt{3}$(x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数f(x)=x2-2ax-2,x∈[-3,4],a∈R.
(Ⅰ)当a=1时,函数f(x)的值域;
(Ⅱ)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某种商品的包装费y(元)与商品的重量x(千克)有如下函数关系:y=ax2+bx+64,其中x>0,当x=1千克时,y=52元,当x=6.5千克时,y取最小值
(1)若要使商品的包装费低于28元,求商品重量x的取值范围
(2)当x取何值时,平均每千克的包装费P最低,并求出P的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.曲线f(x)=$\frac{1}{2}$x2在点(1,$\frac{1}{2}$)处的切线方程为2x-2y-1=0.

查看答案和解析>>

同步练习册答案