四棱锥P—ABCD的底面是边长为2的菱形,∠DAB=60°,侧棱
,
,M、N两点分别在侧棱PB、PD上,
.![]()
(1)求证:PA⊥平面MNC。
(2)求平面NPC与平面MNC的夹角的余弦值.
(1)证明过程详见解析;(2)
.
解析试题分析:本题主要以四棱锥为几何背景,考查线面垂直、二面角等数学知识,考查学生用向量法解决立体几何的能力,考查学生的空间想象能力、逻辑推理能力和计算能力.第一问,连结AC、BD交于O,则在三角形APC中可知
,在三角形PBO中,利用三边长,可知
,利用线面垂直的判定得
平面ABCD,所以建立空间直角坐标系,得到各个点的坐标,得到
和平面MNC的法向量
的坐标,可求出
//
,所以
平面MNC;第二问,利用平面NPC的法向量
垂直于
和
得到法向量
的坐标,利用夹角公式得到夹角的余弦值.
试题解析:设菱形对角线交于点
,易知
且![]()
又
.由勾股定理知,![]()
又![]()
平面
3分
建立如图空间直角坐标系,
,
,
,
,
5分![]()
⑴显然,
,平面
的法向量
,由
∥
,知
平面
8分
⑵设面
的法向量为
由![]()
取
,得
10分![]()
所以平面
与平面
的夹角的余弦值为
. 12分
考点:1.向量法;2.夹角公式;3.线面垂直的判定.
科目:高中数学 来源: 题型:解答题
如图1,在△ABC中,BC=3,AC=6,∠C=90°,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2。![]()
(1)求证:BC⊥平面A1DC;
(2)若CD=2,求BE与平面A1BC所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
,AF=1,M是线段EF的中点.![]()
求证:(1)AM∥平面BDE;
(2)AM⊥平面BDF.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示.![]()
(1)当a=2时,求证:AO⊥平面BCD.
(2)当二面角A-BD-C的大小为120°时,求二面角A-BC-D的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中点.
(1)求证:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值为
,求直线PA与平面EAC所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com