已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示.
(1)当a=2时,求证:AO⊥平面BCD.
(2)当二面角A-BD-C的大小为120°时,求二面角A-BC-D的正切值.
科目:高中数学 来源: 题型:解答题
已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4
(1)求异面直线GE与PC所成角的余弦值;
(2)若F点是棱PC上一点,且,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
四棱锥P—ABCD的底面是边长为2的菱形,∠DAB=60°,侧棱,,M、N两点分别在侧棱PB、PD上,.
(1)求证:PA⊥平面MNC。
(2)求平面NPC与平面MNC的夹角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB,AD,CD的中点,计算:
(1)·.
(2)EG的长.
(3)异面直线EG与AC所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.
(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四边形ABCD为矩形,PD⊥平面ABCD,PD∥QA,QA=AD=PD.
(1)求证:平面PQC⊥平面DCQ;
(2)若二面角Q-BP-C的余弦值为-,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.
(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com