如图,四边形ABCD为矩形,PD⊥平面ABCD,PD∥QA,QA=AD=PD.
(1)求证:平面PQC⊥平面DCQ;
(2)若二面角Q-BP-C的余弦值为-,求的值.
科目:高中数学 来源: 题型:解答题
已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示.
(1)当a=2时,求证:AO⊥平面BCD.
(2)当二面角A-BD-C的大小为120°时,求二面角A-BC-D的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中点.
(1)求证:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值为,求直线PA与平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥S﹣ABCD的底面为正方形,SD⊥平面ABCD,SD=AD=2,请建立空间直角坐标系解决下列问题.
(1)求证:;(2)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,平面平面,是等腰直角三角形,,四边形是直角梯形,∥AE,,,分别为的中点.
(1)求异面直线与所成角的大小;
(2)求直线和平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥P-ABCD的底面ABCD为矩形,且PA="AD=1,AB=2," ,.
(1)求证:平面平面;
(2)求三棱锥D-PAC的体积;
(3)求直线PC与平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题12分)如图:四棱锥P—ABCD中,底面ABCD
是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(1)证明:无论点E在BC边的何处,都有PE⊥AF;
(2)当BE等于何值时,PA与平面PDE所成角的大小为45°.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com