精英家教网 > 高中数学 > 题目详情

如图,四棱锥P-ABCD的底面ABCD为矩形,且PA="AD=1,AB=2," ,.
(1)求证:平面平面
(2)求三棱锥D-PAC的体积;
(3)求直线PC与平面ABCD所成角的正弦值.

(1)证明:∵ABCD为矩形
            ∵          ∴
平面,又∵平面PAD               ∴平面平面 

(2) ∵………  5分
由(1)知平面,且  ∴平面………  6分
………  8分
(3)解法1:以点A为坐标原点,AB所在的直线为y轴建立空间直角坐标系如右图示,则依题意可得,,
可得, ………  10分
平面ABCD的单位法向量为,设直线PC与平面ABCD所成角为

,即直线PC与平面ABCD所成角的正弦值

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为矩形,PD⊥平面ABCDPDQAQAADPD.

(1)求证:平面PQC⊥平面DCQ
(2)若二面角Q-BP-C的余弦值为-,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥中,底面为平行四边形,侧面,已知
(Ⅰ)求证:
(Ⅱ)在SB上选取点P,使SD//平面PAC ,并证明;
(Ⅲ)求直线与面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。

(I)求棱PB的长;
(II)求二面角P—AB—C的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题10分)如图,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,

(1)求证:AC⊥BF;
(2)求点A到平面FBD的距离. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设向量并确定的关系,使轴垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在棱长为1正方体ABCD-A1B1C1D1中,M和N分别为A1B1和BB1的中点
(1)求直线AM和CN所成角的余弦值;
(2)若P为B1C1的中点,求直线CN与平面MNP所成角的余弦值;
(3)P为B1C1上一点,且,当 B1D⊥面PMN时,求的值.
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分) 如图,在三棱锥中,,点分别是的中点,底面
(1)求证:平面
(2)当时,求直线与平面所成角的正弦值;
(3)当为何值时,在平面内的射影恰好为的重心.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知点P在y=x2上,且点P到直线y=x的距离为,这样的点P的个数是(  )

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案