精英家教网 > 高中数学 > 题目详情

如图,在四棱锥PABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,ABADABCDAB=2AD=2CD=2,EPB的中点.
 
(1)求证:平面EAC⊥平面PBC
(2)若二面角PACE的余弦值为,求直线PA与平面EAC所成角的正弦值.

(1)见解析(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

四棱锥P—ABCD的底面是边长为2的菱形,∠DAB=60°,侧棱,M、N两点分别在侧棱PB、PD上,.

(1)求证:PA⊥平面MNC。
(2)求平面NPC与平面MNC的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB,AD,CD的中点,计算:

(1)·.
(2)EG的长.
(3)异面直线EG与AC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,且满足=== (如图(1)),将△AEF沿EF折起到△EF的位置,使二面角EFB成直二面角,连接B、P(如图(2)).

(1)求证: E⊥平面BEP;
(2)求直线E与平面BP所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱ABCDA1B1C1D1中,侧棱A1A⊥底面ABCDABDCABADADCD=1,AA1AB=2,E为棱AA1的中点.
 
(1)证明B1C1CE
(2)求二面角B1-CE-C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体ABCDA1B1C1D1中,AA1AD=1,ECD的中点.

(1)求证:B1EAD1.
(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.
(3)若二面角AB1EA1的大小为30°,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为矩形,PD⊥平面ABCDPDQAQAADPD.

(1)求证:平面PQC⊥平面DCQ
(2)若二面角Q-BP-C的余弦值为-,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥中,底面为平行四边形,侧面,已知
(Ⅰ)求证:
(Ⅱ)在SB上选取点P,使SD//平面PAC ,并证明;
(Ⅲ)求直线与面所成角的正弦值。

查看答案和解析>>

同步练习册答案