精英家教网 > 高中数学 > 题目详情

在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,且满足=== (如图(1)),将△AEF沿EF折起到△EF的位置,使二面角EFB成直二面角,连接B、P(如图(2)).

(1)求证: E⊥平面BEP;
(2)求直线E与平面BP所成角的大小.

(1)见解析;(2)直线E与平面BP所成角的大小为.

解析试题分析:(1)为计算上的便利,不妨设正三角形ABC的边长为3,

利用已知条件首先得到△ADF是正三角形.再推出EF⊥AD,∠EB为二面角EFB的平面角,根据二面角EFB为直二面角,得到E⊥BE.
又∵BE∩EF=E,∴E⊥平面BEF,即E⊥平面BEP.
(2)建立空间直角坐标系,利用“空间向量方法”求角.
试题解析: (1)不妨设正三角形ABC的边长为3,

则在图(1)中,取BE的中点D,连接DF,
===,∴FA=AD=2.又∠A=60°,
则△ADF是正三角形.又AE=ED=1,∴EF⊥AD,
∴在图(2)中有E⊥EF,BE⊥EF,∴∠EB为二面角EFB的平面角,
∵二面角EFB为直二面角,∴E⊥BE.
又∵BE∩EF=E,∴E⊥平面BEF,即E⊥平面BEP.
(2)由(1)可知E⊥平面BEP,BE⊥EF,建立如图所示的空间直角坐标系,
则E(0,0,0),  (0,0,1),B(2,0,0).连接DP,由(1)知EF

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图1,在△ABC中,BC=3,AC=6,∠C=90°,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2。

(1)求证:BC⊥平面A1DC;
(2)若CD=2,求BE与平面A1BC所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图几何体中,四边形为矩形,的中点,为线段上的一点,且.

(1)证明:
(2)证明:面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是边长为1的菱形,底面的中点,的中点,,如图建立空间直角坐标系.

(1)求出平面的一个法向量并证明平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

)如图所示,在三棱锥PABC中,ABBC,平面PAC⊥平面ABCPDAC于点DAD=1,CD=3,PD.
 
(1)证明:△PBC为直角三角形;
(2)求直线AP与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥PABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,ABADABCDAB=2AD=2CD=2,EPB的中点.
 
(1)求证:平面EAC⊥平面PBC
(2)若二面角PACE的余弦值为,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCDABAA1.

(1)证明:A1C⊥平面BB1D1D
(2)求平面OCB1与平面BB1D1D的夹角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面是正方形,底面上的任意一点.

(1)求证:平面平面
(2)当时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,△是边长为的等边三角形,平面分别是的中点.

(1)求证:∥平面
(2)若上的动点,当与平面所成最大角的正切值为时,求平面 与平面所成二面角(锐角)的余弦值.

查看答案和解析>>

同步练习册答案