)如图所示,在三棱锥P-ABC中,AB=BC=
,平面PAC⊥平面ABC,PD⊥AC于点D,AD=1,CD=3,PD=
.
(1)证明:△PBC为直角三角形;
(2)求直线AP与平面PBC所成角的正弦值.
科目:高中数学 来源: 题型:解答题
在四棱锥
中,
//
,
,
,
平面
,
. ![]()
(1)求证:
平面
;
(2)求异面直线
与
所成角的余弦值;
(3)设点
为线段
上一点,且直线
与平面
所成角的正弦值为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥PABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2
,E是PB上任意一点.![]()
(1)求证:AC⊥DE;
(2)已知二面角APBD的余弦值为
,若E为PB的中点,求EC与平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,四棱锥P—ABCD中,AB
AD,CD
AD,PA
底面ABCD,PA=AD=CD=2AB=2,M为PC的中点。![]()
(1)求证:BM∥平面PAD;
(2)在侧面PAD内找一点N,使MN
平面PBD;
(3)求直线PC与平面PBD所成角的正弦。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,且满足
=
=
=
(如图(1)),将△AEF沿EF折起到△
EF的位置,使二面角![]()
EF
B成直二面角,连接
B、
P(如图(2)).![]()
(1)求证:
E⊥平面BEP;
(2)求直线
E与平面
BP所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
是边长为
的正方形,
平面
,
,
,
与平面
所成角为
.![]()
(1)求证:
平面
;
(2)求二面角
的余弦值;
(3)设点
是线段
上一个动点,试确定点
的位置,使得
平面
,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为
.![]()
(Ⅰ)若F是线段CD的中点,证明:EF⊥面DBC;
(Ⅱ)求二面角D-EC-B的平面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com