如图,在三棱柱中,△是边长为的等边三角形,平面,,分别是,的中点.
(1)求证:∥平面;
(2)若为上的动点,当与平面所成最大角的正切值为时,求平面 与平面所成二面角(锐角)的余弦值.
科目:高中数学 来源: 题型:解答题
在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,且满足=== (如图(1)),将△AEF沿EF折起到△EF的位置,使二面角EFB成直二面角,连接B、P(如图(2)).
(1)求证: E⊥平面BEP;
(2)求直线E与平面BP所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为.
(Ⅰ)若F是线段CD的中点,证明:EF⊥面DBC;
(Ⅱ)求二面角D-EC-B的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
四棱锥中,底面为平行四边形,侧面面,已知
(Ⅰ)求证:;
(Ⅱ)在SB上选取点P,使SD//平面PAC ,并证明;
(Ⅲ)求直线与面所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
四棱锥中,底面是边长为2的正方形,,且,点满足.
(1)求证:平面;
(2)求二面角的余弦值;
(3)在线段上是否存在点使得平面?若存在,确定点的位置;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com