精英家教网 > 高中数学 > 题目详情

如图所示,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.

(1)证明详见解析;(2)30°;(3)存在  SE∶EC=2∶1

解析试题分析:(1)设AC交BD于O,以 分别为S,D,C,
x轴、y轴、z轴的正方向,建立空间直角坐标系,则S,D,C,
求出的坐标,并计算得到·=0,从而AC⊥SD.(2)为平面PAC的一个法向量,
为平面DAC的一个法向量,向量的夹角等于二面角PACD的平面角,根据向量的夹角公式计算出的夹角即可.(3)假设存在一点E使BE∥平面PAC,设=t(0≤t≤1),则=+=+t,因为·=0,可建立关于t的等式,解之即可.
试题解析:(1)证明:连接BD,设AC交BD于O,
由题意知SO⊥平面ABCD,以O为坐标原点,分别为
x轴、y轴、z轴的正方向,建立空间直角坐标系.

设底面边长为a,,则高SO=a.于是S,D,C,
=,=,·=0,故OC⊥SD,从而AC⊥SD.  4分
(2)解:由题设知,平面PAC的一个法向量为=,
平面DAC的一个法向量为=,则cos<,>==,
故所求二面角的大小为30°. 8分
(3)解:在棱SC上存在一点E使BE∥平面PAC.,由(2)知是平面PAC的一个法向量,
=,=,        设=t(0≤t≤1),
=+=+t=,而·=0t=,
即当SE∶EC=2∶1时,BE∥平面PAC.          12分
考点:1.空间两向量垂直的充要条件;2.二面角;3.直线与平面平行判定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是边长为1的菱形,底面的中点,的中点,,如图建立空间直角坐标系.

(1)求出平面的一个法向量并证明平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面是正方形,底面上的任意一点.

(1)求证:平面平面
(2)当时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面平面是等腰直角三角形,,四边形是直角梯形,∥AE,,分别为的中点.

(1)求异面直线所成角的大小;
(2)求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图在四棱锥中,底面是边长为的正方形,侧面底面,且

(1)求证:面平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,△是边长为的等边三角形,平面分别是的中点.

(1)求证:∥平面
(2)若上的动点,当与平面所成最大角的正切值为时,求平面 与平面所成二面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如右图,正方体的棱长为1.应用空间向量方法求:

⑴ 求的夹角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图8,在直角梯形中,,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面互相垂直,如图9.
(1)求证:平面平面
(2)求平面与平面所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)如图:四棱锥P—ABCD中,底面ABCD

是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(1)证明:无论点E在BC边的何处,都有PE⊥AF;
(2)当BE等于何值时,PA与平面PDE所成角的大小为45°. 

查看答案和解析>>

同步练习册答案