精英家教网 > 高中数学 > 题目详情

如右图,正方体的棱长为1.应用空间向量方法求:

⑴ 求的夹角

(1)
(2)对于线线垂直的证明可以运用几何性质法也可以运用向量法来证明向量的垂直即可。

解析试题分析:解:建立空间直角坐标系,则
 - 1分
⑴ 所以 , - 2分
, 
所以   - 4分
所以                  5分
⑵ 因为 , 7分
            -9分
所以 .   10分
考点:空间向量的运用
点评:主要是考查了向量法来求解异面直线所成的角和线线垂直的证明,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在长方体ABCDA1B1C1D1中,AA1AD=1,ECD的中点.

(1)求证:B1EAD1.
(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.
(3)若二面角AB1EA1的大小为30°,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥中,底面为平行四边形,侧面,已知
(Ⅰ)求证:
(Ⅱ)在SB上选取点P,使SD//平面PAC ,并证明;
(Ⅲ)求直线与面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1, 在直角梯形中, 为线段的中点. 将沿折起,使平面平面,得到几何体,如图2所示.
(1)求证:平面
(2)求二面角的余弦值.   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。

(I)求棱PB的长;
(II)求二面角P—AB—C的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题10分)如图,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,

(1)求证:AC⊥BF;
(2)求点A到平面FBD的距离. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在棱长为1正方体ABCD-A1B1C1D1中,M和N分别为A1B1和BB1的中点
(1)求直线AM和CN所成角的余弦值;
(2)若P为B1C1的中点,求直线CN与平面MNP所成角的余弦值;
(3)P为B1C1上一点,且,当 B1D⊥面PMN时,求的值.
 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若直线的交点在第一象限内,则的取值范围是( )

A.B.C.D.

查看答案和解析>>

同步练习册答案