精英家教网 > 高中数学 > 题目详情
如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF=
 

考点:与圆有关的比例线段
专题:选作题,立体几何
分析:证明△AEF∽△ACB,可得
AE
AC
=
EF
BC
,即可得出结论.
解答: 解:由题意,∵以BC为直径的半圆分别交AB、AC于点E、F,
∴∠AEF=∠C,
∵∠EAF=∠CAB,
∴△AEF∽△ACB,
AE
AC
=
EF
BC

∵BC=6,AC=2AE,
∴EF=3.
故答案为:3.
点评:本题考查三角形相似的判定与运用,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.
(Ⅰ)求证:CD⊥平面ABD;
(Ⅱ)若AB=BD=CD=1,M为AD中点,求三棱锥A-MBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(Ⅰ)求这500件产品质量指标值的样本平均数
.
x
和样本方差s2(同一组中数据用该组区间的中点值作代表);
(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数
.
x
,σ2近似为样本方差s2
(i)利用该正态分布,求P(187.8<Z<212.2);
(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.
附:
150
≈12.2.
若Z-N(μ,σ2)则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a1=1,公差为d,a3>0,当且仅当n=3时,|an|取到最小值,则d的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图(单位:cm)如图所示,则该几何体的体积为
 
cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,P,Q分别是棱AB,A1D1上的点,PQ⊥AC,则PQ与BD1所成角的余弦值得取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设b、c分别是先后抛掷一枚骰子得到的点数,则函数f(x)=x2+bx+c有零点的概率为(  )
A、
17
36
B、
1
2
C、
19
36
D、
5
9

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足不等式组
x-y+3>0
4x+5y-33<0
x≥0,y≥0
,若x,y为整数,则3x+4y的最大值是(  )
A、26B、25C、23D、22

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,曲线C由上半椭圆C1
y2
a2
+
x2
b2
=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为
3
2

(Ⅰ)求a,b的值;
(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.

查看答案和解析>>

同步练习册答案