精英家教网 > 高中数学 > 题目详情
已知在三棱锥A-BCD中,CA=BD=2
2
,CD=2
3
,AD=AB=BC=2,则该棱锥的外接球半径
 
考点:球的体积和表面积
专题:计算题,空间位置关系与距离
分析:证明CB⊥平面ABD,AB⊥AD,可得CD为棱锥的外接球的直径,即可得出结论.
解答: 解:∵三棱锥A-BCD中,CA=BD=2
2
,CD=2
3
,AD=AB=BC=2,
∴CB⊥AB,CB⊥BD,AB⊥AD,
∴CB⊥平面ABD,AB⊥AD,
∴CD为棱锥的外接球的直径,
∵CD=2
3

∴棱锥的外接球半径为
3

故答案为:
3
点评:本题考查棱锥的外接球半径,考查学生的计算能力,确定CD为棱锥的外接球的直径是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,空间四边形ABCD中,E、F、G分别是AB、BC、CD上,且满足AE:EB=CF:FB=2:1,CG:GD=3:1,过E、F、G的平面交AD于点H.
(1)求AH:HD;
(2)求证:EH、FG、BD三线共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

线面角与二面角的取值范围分别是(  )
A、[0,
π
2
),[0,π)
B、[0,
π
2
),[0,π]
C、[0,
π
2
],[0,π)
D、[0,
π
2
],[0,π]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(sinx-cosx)•sin2x
sinx

(1)求f(x)的定义域及最小正周期;
(2)若x∈(0,π),求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足f(x+3)=-f(x),且f(1)=2,则f(2013)+f(2015)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的所有顶点都在球O的球面上,SC为球O的直径,且SC⊥OA,SC⊥OB,△OAB为等边三角形,三棱锥S-ABC的体积为
4
3
3
,求球O的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是R上的偶函数,且在[0,+∞)上递增,若f(
1
2
)=0,f(log 
1
4
x)<0,那么x的取值范围是(  )
A、
1
2
<x<2
B、x>2
C、
1
2
<x<1
D、x>2或
1
2
<x<1

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程cosx+cos(x+
π
3
)=
3
m3-2
3
有实根,则m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、在平面内共线的向量,在空间不一定共线
B、在空间共线的向量,在平面内不一定共线
C、在平面内共线的向量,在空间一定不共线
D、在空间共线的向量,在平面内一定共线

查看答案和解析>>

同步练习册答案