精英家教网 > 高中数学 > 题目详情

(12分)已知曲线C方程:
(1)当m为何值时,此方程表示圆;
(2)若m=0,是否存在过点P(0、2)的直线与曲线C交于A、B两点,且,若存在,求直线的方程;若不存在,说明理由。


(1)时表示圆
(2)直线的方程

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C:x2+
y2
a
=1
,直线l:kx-y-k=0,O为坐标原点.
(1)讨论曲线C所表示的轨迹形状;
(2)当k=1时,直线l与曲线C相交于两点M,N,若|MN|=
2
,求曲线C的方程;
(3)当a=-1时,直线l与曲线C相交于两点M,N,试问在曲线C上是否存在点Q,使得
OM
+
ON
OQ
?若存在,求实数λ的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρ=4cosθ
(1)若点A(1,
π
2
),点P是曲线C上任一点,求
AP
2
的取值范围;
(2)若直线l的参数方程是
x=t+m
y=t
,(t为参数),且直线l与曲线C有两个交点M、N,且
CM
CN
=0
,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:
y2
m
+x2=1;
(1)由曲线C上任一点E向x轴作垂线,垂足为F,点P在
EF
上,且 
EP
=-
1
3
PF
.问:点P的轨迹可能是圆吗?请说明理由;
(2)如果直线l的斜率为
2
,且过点M(0,-2),直线l交曲线C于A,B两点,又
MA
MB
=-
9
2
,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省四地六校高三第三次月考数学文卷 题型:解答题

(12分)已知曲线C方程:

(1)当m为何值时,此方程表示圆;

(2)若m=0,是否存在过点P(0、2)的直线与曲线C交于A、B两点,且,若存在,求直线的方程;若不存在,说明理由。

 

查看答案和解析>>

同步练习册答案